Addressing of Micro-robot Teams and Non-contact Micro-manipulation

  • Eric Diller
  • Zhou Ye
  • Joshua Giltinan
  • Metin Sitti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8336)


This manuscript presents two methods for the addressable control of multiple magnetic microrobots. Such methods could be valued for microrobot applications requiring high speed parallel operation. The first uses multiple magnetic materials to enable selective magnetic disabling while the second allows for independent magnetic forces to be applied to a set of magnetic micro-robots moving in three dimensions. As an application of untethered magnetic microrobots, we also present a non-contact manipulation method for micron scale objects using a locally induced rotational fluid flow field. The micro-manipulator is rotated by an external magnetic field in a viscous fluid to generate a rotational flow field, which moves the objects in the flow region by fluidic drag. Due to its untethered and non-contact operation, this micro-manipulation method could be used to quickly move fragile micro-objects in inaccessible or enclosed spaces such as in lab-on-a-chip devices. In addition to introducing the operation and capability of these fabrication and control methods, we discuss the implications of scaling these systems to smaller scales for comparison with other microrobotics actuation and control techniques.


Target Position Viscous Drag Magnetic Strength Magnetic Actuation Motion Actuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diller, E., Sitti, M.: Micro-scale mobile robotics. Foundations and Trends in Robotics 2(3), 143–259 (2013)CrossRefGoogle Scholar
  2. 2.
    Kummer, M., Abbott, J., Kratochvil, B., Borer, R., Sengul, A., Nelson, B.: OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Transactions on Robotics 26(6), 1006–1017 (2010)CrossRefGoogle Scholar
  3. 3.
    Pawashe, C., Floyd, S., Sitti, M.: Modeling and experimental characterization of an untethered magnetic micro-robot. The International Journal of Robotics Research 28, 1077–1094 (2009)CrossRefGoogle Scholar
  4. 4.
    Diller, E., Floyd, S., Pawashe, C., Sitti, M.: Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Transactions on Robotics 28(1), 172–182 (2012)CrossRefGoogle Scholar
  5. 5.
    Diller, E., Pawashe, C., Floyd, S., Sitti, M.: Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. The International Journal of Robotics Research 30(14), 1667–1680 (2011)CrossRefGoogle Scholar
  6. 6.
    Carrozza, M., Dario, P., Menciassi, A., Fenu, A.: Manipulating biological and mechanical micro-objects using LIGA-microfabricated end-effectors. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1811–1816 (1998)Google Scholar
  7. 7.
    Kim, D., Kim, B., Kang, H., Ju, B.: Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation. In: International Conference on Intelligent Robots and Systems, pp. 1864–1869 (October 2003)Google Scholar
  8. 8.
    Martel, S., Tremblay, C., Ngakeng, S., Langlois, G.: Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Applied Physics Letters 89, 233904 (2006)CrossRefGoogle Scholar
  9. 9.
    Behkam, B., Sitti, M.: Bacterial flagella-based propulsion and on/off motion control of microscale objects. Applied Physics Letters 90, 023902 (2007)Google Scholar
  10. 10.
    Tottori, S., Zhang, L., Qiu, F., Krawczyk, K.K., Franco-Obregón, A., Nelson, B.J.: Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Advanced Materials 24(6), 811–816 (2012)CrossRefGoogle Scholar
  11. 11.
    Grier, D.G.: A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)CrossRefGoogle Scholar
  12. 12.
    Yan, J., Skoko, D., Marko, J.: Near-field-magnetic-tweezer manipulation of single DNA molecules. Physical Review E 70(1), 1–5 (2004)CrossRefGoogle Scholar
  13. 13.
    Chiou, P.Y., Ohta, A.T., Wu, M.C.: Massively parallel manipulation of single cells and microparticles using optical images. Nature 436(7049), 370–372 (2005)CrossRefGoogle Scholar
  14. 14.
    Kremser, L., Blaas, D., Kenndler, E.: Capillary electrophoresis of biological particles: viruses, bacteria, and eukaryotic cells. Electrophoresis 25(14), 2282–2291 (2004)CrossRefGoogle Scholar
  15. 15.
    Petit, T., Zhang, L., Peyer, K.E., Kratochvil, B.E., Nelson, B.J.: Selective trapping and manipulation of microscale objects using mobile microvortices. Nano Letters 12(1), 156–160 (2012)CrossRefGoogle Scholar
  16. 16.
    Ye, Z., Diller, E., Sitti, M.: Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators. Journal of Applied Physics 112(6), 064912 (2012)Google Scholar
  17. 17.
    Diller, E., Miyashita, S., Sitti, M.: Remotely addressable magnetic momposite micropumps. RSC Advances 2(9), 3850–3856 (2012)CrossRefGoogle Scholar
  18. 18.
    Miyashita, S., Diller, E., Sitti, M.: Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions. The International Journal of Robotics Research 32(5), 591–613 (2013)CrossRefGoogle Scholar
  19. 19.
    Diller, E., Miyashita, S., Sitti, M.: Magnetic hysteresis for multi-state addressable magnetic microrobotic control. In: International Conference on Intelligent Robots and Systems, pp. 2325–2331 (2012)Google Scholar
  20. 20.
    Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: One centimeter modules for programmable matter through self-disassembly. In: IEEE International Conference on Robotics and Automation, pp. 2485–2492 (2010)Google Scholar
  21. 21.
    Diller, E., Giltinan, J., Sitti, M.: Independent control of multiple magnetic microrobots in three dimensions. The International Journal of Robotics Research 32(5), 614–631 (2013)CrossRefGoogle Scholar
  22. 22.
    Abbott, J., Nagy, Z., Beyeler, F., Nelson, B.: Robotics in the small, part I: Microbotics. Robotics & Automation Magazine 14(2), 92–103 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eric Diller
    • 1
  • Zhou Ye
    • 1
  • Joshua Giltinan
    • 1
  • Metin Sitti
    • 1
  1. 1.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations