Small-Scale Robotics : An Introduction

  • Igor Paprotny
  • Sarah Bergbreiter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8336)


The term small-scale robotics describes a wide variety of miniature robotic systems, ranging from millimeter sized devices down to autonomous mobile systems with dimensions measured in nanometers. Unified by the common goal of enabling applications that require tiny mobile robots, research in small-scaled robotics has produced a variety of novel miniature robotic systems in the last decade. As the size of the robots scale down, the physics that governs the mode of operation, power delivery, and control change dramatically, restricting how these devices operate, and requiring novel engineering solutions to enable their functionality. This chapter provides an overview and introduction to small-scale robotics, drawing parallels to systems presented later in the book. Comparison to biological systems is also presented, using biology to speculate regarding future capabilities of robotic systems at the various size scales.


Mobile Robot Robotic System Size Scale Power Delivery Hexapod Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feynman, R.P.: There’s plenty of room at the bottom. Journal of Microelectromechanical Systems 1(1), 60–66 (1992)CrossRefGoogle Scholar
  2. 2.
    Feynman, R.P.: Infinitesimal machinery. Journal of Microelectromechanical Systems 2(1), 4–14 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Flynn, A.M.: Gnat robots (and how they will change robotics). In: IEEE Micro Robots and Teleoperators Workshop: An Investigation of Micromechanical Structures, Actuators and Sensors, Hyannis, MA (1987)Google Scholar
  4. 4.
    Kahn, J.M., Katz, R.H., Katz, Y.H., Pister, K.S.J.: Emerging challenges: Mobile networking for “smart dust”. Journal of Comunications and Networks 2, 188–196 (2000)CrossRefGoogle Scholar
  5. 5.
    Hollar, S., Flynn, A., Bellew, C., Pister, K.S.J.: Solar powered 10 mg silicon robot. In: The Proceedings of the the Sixteenth Annual International Conference on Micro Electro Mechanical Systems, MEMS 2003, Kyoto, Japan, January 19-23, pp. 706–711 (2003)Google Scholar
  6. 6.
    Donald, B.R., Levey, C.G., McGray, C., Paprotny, I., Rus, D.: An untethered, electrostatic, globally-controllable MEMS micro-robot. Journal of Microelectromechanical Systems 15(1), 1–15 (2006)CrossRefGoogle Scholar
  7. 7.
    Yesin, K.B., Vollmers, K., Nelson, B.J.: Actuation, sensing, and fabrication for in vivo magnetic microrobots. In: Ang Jr., M.H., Khatib, O. (eds.) Experimental Robotics IX. STAR, vol. 21, pp. 321–330. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Majeti, N.V., Kumar, R.: Nano and microparticles as controlled drug delivery devices. Journal of Pharmaceutical Sciences 3(2), 234–258 (2000)Google Scholar
  9. 9.
    Anelli, P.L., Spencer, N., Stoddart, J.F.: A molecular shuttle. Journal of Americal Chemical Society 113(13), 5131–5133 (1991)CrossRefGoogle Scholar
  10. 10.
    Sabelhaus, A.P., Mirsky, D., Hill, M., Martins, N.C., Bergbreiter, S.: TinyTeRP: A tiny terrestrial robotic platform with modular sensing capabilities. In: IEEE International Conference on Robotics and Automation, karisruhe, Germany (May 2013)Google Scholar
  11. 11.
    Hoover, A.M., Steltz, E., Fearing, R.S.: RoACH: an autonomous 2.4g crawling hexapod robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (September 2008)Google Scholar
  12. 12.
    Epson: Monsieur: The ultraminiature robot that propelled itself into the Guinness Book (March 1993),
  13. 13.
    Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics 24(2), 341–347 (2008)CrossRefGoogle Scholar
  14. 14.
    Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340(6132), 603–607 (2013)CrossRefGoogle Scholar
  15. 15.
    Churaman, W.A., Currano, L.J., Morris, C.J., Rajkowski, J.E., Bergbreiter, S.: The first launch of an autonomous thrust-driven microrobot using nanoporous energetic silicon. Journal of Microelectromechanical Systems 21(1), 198–205 (2012)CrossRefGoogle Scholar
  16. 16.
    Ebefors, T., Asplund, T.: A selection of photos of the walking micro-robot (January 2014),
  17. 17.
    Ebefors, T., Mattsson, J.U., Kälvesten, E., Stemme, G.: A walking silicon micro-robot. In: Transducers, Sendai, Japan, pp. 1202–1205 (1999)Google Scholar
  18. 18.
    Hollar, S., Flynn, A.M., Bellew, C., Pister, K.S.J.: Solar powered 10 mg silicon robot. In: IEEE Micro Electro Mechanical Systems, pp. 706–711 (2003)Google Scholar
  19. 19.
    Shimoyama, I., Miura, H., Suzuki, K., Ezura, Y.: Insect-like microrobots with external skeletons. IEEE Control Systems Magazine 13(1), 37–41 (1993)CrossRefGoogle Scholar
  20. 20.
    Yasuda, T., Shimoyama, I., Miura, H.: Microrobot actuated by a vibration energy field. Sensors and Actuators A Physical 43, 366–370 (1994)CrossRefGoogle Scholar
  21. 21.
    Hollar, S., Flynn, A.M., Bergbreiter, S., Pister, K.S.J.: Robot leg motion in a planarized-SOI, Two-Layer Poly-Si process. Journal of Microelectromechanical Systems 14(4), 725–740 (2005)CrossRefGoogle Scholar
  22. 22.
    Edqvist, E., Snis, N., Mohr, R.C., Scholz, O., Corradi, P., Gao, J., Dieguez, A., Wyrsch, N., Johansson, S.: Evaluation of building technology for mass producible millimetre-sized robots using flexible printed circuit boards. Journal of Micromechanics and Microengineering 19(7), 075011(11pp) (2009)Google Scholar
  23. 23.
    Churaman, W.A., Gerratt, A.P., Bergbreiter, S.: First leaps toward jumping microrobots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA (September 2011)Google Scholar
  24. 24.
    Zollikofer, C.: Stepping patterns in ants - influence of speed and curvature. Journal of Experimental Biology 192(1), 95–106 (1994)Google Scholar
  25. 25.
    Kumar, V., Rus, D., Singh, S.: Robot and sensor networks for first responders. Pervasive Computing, 24–33 (October 2004)Google Scholar
  26. 26.
    Zhu, D., Qi, Q., Wang, Y., Lee, K.M., Foong, S.: A prototype mobile sensor network for structural health monitoring. In: Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security, vol. 7294 (April 2009)Google Scholar
  27. 27.
    Gage, D.W.: How to communicate with zillions of robots. In: SPIE Mobile Robots VIII, Boston, vol. 2058, pp. 250–257 (1993)Google Scholar
  28. 28.
    Driesen, W., Varidel, T., Regnier, S., Breguet, J.M.: Micro manipulation by adhesion with two collaborating mobile micro robots. Journal of Micromechanics and Microengineering 15(10), S259–S267 (2005)Google Scholar
  29. 29.
    Martel, S.: Fundamental principles and issues of high-speed piezoactuated three-legged motion for miniature robots designed for nanometer-scale operations. The International Journal of Robotics Research 24(7), 575–588 (2005)CrossRefGoogle Scholar
  30. 30.
    Trimmer, W.: Microrobots and micromechanical systems. Sensors and Actuators 19(3), 267–287 (1989)CrossRefGoogle Scholar
  31. 31.
    Werfel, J.: Anthills built to order: Automating construction with artificial swarms. PhD dissertation, Massachusetts Institute of Technology (May 2006)Google Scholar
  32. 32.
    Karagozler, M.E., Goldstein, S.C., Reid, J.R.: Stress-driven MEMS assembly + electrostatic forces = 1mm diameter robot. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 2763–2769 (October 2009)Google Scholar
  33. 33.
    Goldstein, S.C., Mowry, T.C.: Claytronics: A scalable basis for future robots. In: RoboSphere 2004, Moffett Field, CA (November 2004)Google Scholar
  34. 34.
    Ciuti, G., Menciassi, A., Dario, P.: Capsule endoscopy: From current achievements to open challenges. IEEE Reviews in Biomedical Engineering 4, 59–72 (2011)CrossRefGoogle Scholar
  35. 35.
    Platt, S., Hawks, J., Rentschler, M.: Vision and task assistance using modular wireless in vivo surgical robots. IEEE Transactions on Biomedical Engineering 56(6), 1700–1710 (2009)CrossRefGoogle Scholar
  36. 36.
    Schultz, T.R.: In search of ant ancestors. Proceedings of the National Academy of Sciences 97(26), 14028–14029 (2000)CrossRefGoogle Scholar
  37. 37.
    Zollikofer, C.: Stepping patterns in ants - influence of load. Journal of Experimental Biology 192(1), 119–127 (1994)Google Scholar
  38. 38.
    Burrows, M.: Froghopper insects leap to new heights. Nature 424, 509 (2003)CrossRefGoogle Scholar
  39. 39.
    Frye, M.A., Dickinson, M.H.: Fly flight. Neuron 32(3), 385–388 (2001)CrossRefGoogle Scholar
  40. 40.
    Andersen Borg, C.M., Bruno, E., Kiørboe, T.: The kinematics of swimming and relocation jumps in copepod nauplii. Plos One 7(10), e47486 (2012)Google Scholar
  41. 41.
    Lipp, A., Wolf, H., Lehmann, F.: Walking on inclines: energetics of locomotion in the ant camponotus. The Journal of Experimental Biology 208, 707–719 (2005)CrossRefGoogle Scholar
  42. 42.
    Saranli, U., Buehler, M., Koditschek, D.E.: RHex: a simple and highly mobile hexapod robot. International Journal of Robotics Research 20, 616–631 (2001)CrossRefGoogle Scholar
  43. 43.
    Kim, S., Clark, J.E., Cutkosky, M.R.: iSprawl: design and tuning for high-speed autonomous open-loop running. The International Journal of Robotics Research 25(9), 903–912 (2006)CrossRefGoogle Scholar
  44. 44.
    Zufferey, J.C., Klaptocz, A., Beyeler, A., Nicoud, J.D., Floreano, D.: A 10-gram vision-based flying robot. Advanced Robotics 21, 1671–1684 (2007)CrossRefGoogle Scholar
  45. 45.
    Donald, B.R., Levey, C.G., McGray, C., Rus, D., Sinclair, M.: Power delivery and locomotion of untethered micro-actuators. Journal of Microelectromechanical Systems 10(6), 947–959 (2003)CrossRefGoogle Scholar
  46. 46.
    Valencia, M., Atallah, T., Castro, D., Conchouso, D., Dosari, M., Hammad, R., Rawashdeh, E., Zaher, A., Kosel, J., Foulds, I.G.: Development of untethered SU-8 polymer scratch drive microrobots. In: Proceedings of the 24th International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2011), pp. 1221–1224 (January 2011)Google Scholar
  47. 47.
    Floyd, S., Pawashe, C., Sitti, M.: An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. In: The Proceedings of IEEE International Conference on Robotics and Automation, ICRA (2008)Google Scholar
  48. 48.
    Frutiger, D.R., Kratochvil, B.E., Vollmers, K., Nelson, B.J.: Magmites wireless resonant magnetic microrobots. In: The Proceedings of IEEE International Conference on Robotics and Automation, ICRA (May 2008)Google Scholar
  49. 49.
    Ghosh, A., Fischer, P.: Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters 9(6), 2243–2245 (2009)CrossRefGoogle Scholar
  50. 50.
    Jing, W., Pagano, N., Cappelleri, D.: A novel micro-scale magnetic tumbling microrobot. Journal of Micro-Bio Robotics 8(1), 1–12 (2013)CrossRefGoogle Scholar
  51. 51.
    Martel, S.: Controlled bacterial micro-actuation. In: Proc. of the Int. Conf. on Microtechnologies in Medicine, pp. 89–92 (May 2006)Google Scholar
  52. 52.
    Kim, D., Liu, A., Diller, E., Sitti, M.: Chemotactic steering of bacteria propelled microbeads. Biomedical Microdevices 14(6), 1009–1017 (2012)CrossRefGoogle Scholar
  53. 53.
    Martel, S.: Bacterial microsystems and microrobots. Biomedical Microdevices 14, 1033–1045 (2012)CrossRefGoogle Scholar
  54. 54.
    Sanchez, S., Solovev, A.A., Harazim, S.M., Deneke, C., Mei, Y.F., Shmidt, O.G.: The smallest man-made jet engine. The Chemical Record 11(6), 367–370 (2011)CrossRefGoogle Scholar
  55. 55.
    Chiou, P.Y.: Massively Parallel Optical Manipulation of Single Cells, Micro- and Nano-particles on Optoelectronic Devices. PhD thesis, University of California, Berkeley (2005)Google Scholar
  56. 56.
    Erb, R.M., Jenness, N.J., Clark, R.L., Yellen, B.B.: Towards holonomic control of janus particles in optomagnetic traps. Advanced Materials 21, 1–5 (2009)CrossRefGoogle Scholar
  57. 57.
    Donald, B.R., Levey, C.G., Paprotny, I.: Planar microassembly by parallel actuation of MEMS microrobots. Journal of Microelectromechanical Systems 17(4), 789–808 (2008)CrossRefGoogle Scholar
  58. 58.
    Donald, B.R.: Building very small mobile micro robots. Inaugural Lecture, Nanotechnology Public Lecture Series. ( MIT (Research Laboratory for Electronics, Electrical Engineering and Computer Science, and Microsystems Technology, Laboratories), Cambridge (2007),
  59. 59.
    Becker, A.T.: Ensemble Control of Robotic Systems. PhD thesis, University of Illinois at Urbana-Champaign (2012)Google Scholar
  60. 60.
    Khademhosseini, A., Langer, R., Borstein, J., Vacanti, J.P.: Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Science 103(8), 2480–2487 (2006)CrossRefGoogle Scholar
  61. 61.
    Popa, D., Stephanou, H.E.: Micro and meso scale robotic assembly. SME Journal of Manufacturing Processes 6(1), 52–71 (2004)CrossRefGoogle Scholar
  62. 62.
    Donald, B.R., Levey, C., Paprotny, I., Rus, D.: Planning and control for microassembly using stress-engineered. International Journal of Robotics Research 32(2), 218–246 (2013)CrossRefGoogle Scholar
  63. 63.
    Popa, D., Cappelleri, D., Paprotny, I.: Mobile microrobotic challenge 2014 (2013),
  64. 64.
    Lyon, W.F.: Ohio state university extension fact sheet: house dust mites (1991),
  65. 65.
    Nishiharra, E., Shimmen, T., Sonobe, S.: Functional characterization of contractile vacuole isolated from amoeba proteus. Cell Structure and Function 29(4), 85–90 (2004)CrossRefGoogle Scholar
  66. 66.
    Huber, J.T.: The genus dicopomorha (hymenoptera, mymaridae) in Africa and a key to alaptus-group genera. ZooKeys 20, 233–244 (2009)CrossRefGoogle Scholar
  67. 67.
    Purcell, E.M.: Life at low reynolds number. American Journal of Physics 45, 3–11 (1977)CrossRefGoogle Scholar
  68. 68.
    Davis, M.E.: The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Molecular Pharmaceutics 6(3), 659–668 (2009)CrossRefGoogle Scholar
  69. 69.
    Choi, C.H.J., Zuckerman, J.E., Webster, P., Davis, M.E.: Targeting kidney mesangium by nanoparticles of defined size. Proceedings of the National Academy of Science 108(16), 6656–6661 (2011)CrossRefGoogle Scholar
  70. 70.
    Zuckerman, J.E., Choi, C.H.J., Han, H., Davis, M.E.: Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proceedings of the National Academy of Science 109(8), 3137–3142 (2012)CrossRefGoogle Scholar
  71. 71.
    Seeman, N.C.: Nucleic acid nanostructures and topology. Angewandte Chemie International Edition 37(23), 3220–3238 (1998)CrossRefGoogle Scholar
  72. 72.
    Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295, 2418–2421 (2002)CrossRefGoogle Scholar
  73. 73.
    Rothemund, P.W.K.: Folding dna to create nanoscale shapes and patterns. Nature 446, 297–302Google Scholar
  74. 74.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  75. 75.
    Bissell, R., Cordova, E., Kaifer, A.E., Stoddart, J.F.: A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994)CrossRefGoogle Scholar
  76. 76.
    Hess, H., Clemmens, J., Qin, D., Howard, J., Vogel, V.: Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Letters 1(5), 235–239 (2001)CrossRefGoogle Scholar
  77. 77.
    Vale, R.D., Reese, T.S., Sheetz, M.P.: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42(1), 39–50 (1985)CrossRefGoogle Scholar
  78. 78.
    Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., Tour, J.M.: Directional control in thermally driven single-molecule nanocars. Nano Letters 5(11), 2330–2334 (2005)CrossRefGoogle Scholar
  79. 79.
    Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nagreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)CrossRefGoogle Scholar
  80. 80.
    McGrath, S., Sinderen, D.: Bacteriophage: Genetics and Molecular Biology. Caister Academic Press (2007)Google Scholar
  81. 81.
    Centers for Disease Control and Prevention: Seasonal inlueanza, flu (2013), (downloaded on December 30, 2013)
  82. 82.
    Goshima, G., Vale, R.D.: Cell cycle-dependent dynamics and regulation of mototic kinesins in drosophila s2 cells. Molecular Biology of the Cell 16(8), 3896–3907 (2005)CrossRefGoogle Scholar
  83. 83.
    Lehman, I.R., Bessman, M.J., Simms, E.S., Kornberg, A.: Enzymatic synthesis of deoxyribonucleic acid. i. Preparation of substrates and partial purification of an enzyme from escheria coli. Journal of Biological Chemistry 233(1), 163–170 (1958)Google Scholar
  84. 84.
    Lehman, I.R.: Dna ligase: structure, mechanism, and function. Science 186(4166), 790–797 (1974)CrossRefGoogle Scholar
  85. 85.
    Pulskamp, J.S., Polcawich, R.G., Rudy, R.Q., Bedair, S.S., Proie, R.M., Ivanov, T., Smith, G.L.: Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications. MRS Bulletin 37(11), 1062–1070 (2012)CrossRefGoogle Scholar
  86. 86.
    Penskiy, I., Bergbreiter, S.: Optimized electrostatic inchworm motors using a flexible driving arm. Journal of Micromechanics and Microengineering 23(1), 015018 (2013)Google Scholar
  87. 87.
    Gerratt, A.P., Bergbreiter, S.: Incorporating compliant elastomers for jumping locomotion in microrobots. Smart Materials and Structures 22(1), 014010 (2013)Google Scholar
  88. 88.
    Whitney, J.P., Sreetharan, P.S., Ma, K.Y., Wood, R.J.: Pop-up book MEMS. Journal of Micromechanics and Microengineering 21(11), 115021 (2011)CrossRefGoogle Scholar
  89. 89.
    Tang, Y., Chen, C., Khaligh, A., Penskiy, I., Bergbreiter, S.: An ultra-compact dual-stage converter for driving electrostatic actuators in mobile microrobots. IEEE Transactions on Power Electronics 29(6), 2991–3000 (2014)CrossRefGoogle Scholar
  90. 90.
    Karpelson, M., Wei, G.Y., Wood, R.J.: Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical 176, 78–89 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Igor Paprotny
    • 1
  • Sarah Bergbreiter
    • 2
  1. 1.University of IllinoisChicagoUSA
  2. 2.University of MarylandCollege ParkUSA

Personalised recommendations