Strain Measurement in an Aluminium Foam by Means of Digital Image Correlation

  • Luca GoglioEmail author
  • Marco Peroni
  • Jakson Manfredini Vassoler
Part of the Augmented Vision and Reality book series (Augment Vis Real, volume 4)


Metallic foams represent a particular class of materials, characterized by their cellular internal structure, which are receiving a growing interest for lightweight construction and impact absorbers. The inhomogeneity makes it difficult to measure the strain with conventional techniques (e.g. strain gauges); on the contrary, an optical non-contact technique is particularly suitable, taking advantage of the naturally speckled surface. This chapter presents the application of the Digital Image Correlation (DIC) to the study of the response of an aluminium foam subjected to compression. A key aspect of the mechanical characterization of the foam is to evaluate the influence of the density on the sensitivity to the loading rate. The measuring technique encompasses two steps: first the displacements of a set of marker points are tracked using image analysis; then the strains are evaluated by means of a strain-displacement relationship, in which the markers play the role of the nodes in finite element modelling. The results allow for evaluating the evolution of the strains in the material during the compression test.


Digital image correlation Metallic foams Compression testing Strain measurement 


  1. 1.
    Pan, B., Qian, K., Xie, H.M., Asundi, A.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20, 1–17 (2009)CrossRefGoogle Scholar
  2. 2.
    Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.: Metal Foams: A Design Guide. Butterworth-Heinemann, Oxford (2000)Google Scholar
  3. 3.
    Bastawros, A.F., Bart-Smith, H., Evans, A.G.: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J. Mech. Phys. Solids 48, 301–322 (2000)Google Scholar
  4. 4.
    Issen, K.A., Casey, T.P., Dixon, D.M., Richards, M.C., Ingraham, J.P.: Characterization and modeling of localized compaction in aluminum foam. Scripta Mater. 52, 911–915 (2005)Google Scholar
  5. 5.
    Amsterdam, E., De Hosson, J.Th.M., Onck, P.R.: Failure mechanisms of closed-cell aluminum foam under monotonic and cyclic loading. Acta Mater 54, 4465–4472 (2006)Google Scholar
  6. 6.
    Yu, H., Guo, Z., Li, B., Yao, G., Luo, H., Liu, Y.: Research into the effect of cell diameter of aluminum foam on its compressive and energy absorption properties. Mater. Sci. Eng. A 454–455, 542–546 (2007)CrossRefGoogle Scholar
  7. 7.
    Deshpande, V.S., Fleck, N.A.: Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48, 1253–1283 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ruan, D., Lu, G., Ong, L.S., Wang, B.: Triaxial compression of aluminium foams. Compos. Sci. Technol. 67, 1218–1234 (2007)CrossRefGoogle Scholar
  9. 9.
    Öchsner, A., Kuhn, G., Grácio, J.: Investigation of cellular solids under biaxial stress states. Exp. Mech. 45, 325–330 (2005)CrossRefGoogle Scholar
  10. 10.
    Hanssen, A.G., Hopperstad, O.S., Langseth, M., Ilstad, H.: Validation of constitutive models applicable to aluminium foams. Int. J. Mech. Sci. 44, 359–406 (2002)CrossRefGoogle Scholar
  11. 11.
    Mondal, D.P., Ramakrishnan, N., Suresh, K.S., Das, S.: On the moduli of closed-cell aluminum foam. Scripta Mater. 57, 929–932 (2007)CrossRefGoogle Scholar
  12. 12.
    Edwin Raj, R., Daniel, B.S.S.: Structural and compressive property correlation of closed-cell aluminum foam. J Alloy Compd. 467, 550–556 (2009)CrossRefGoogle Scholar
  13. 13.
    Konstantinidis, ICh., Papadopoulos, D.P., Lefakis, H., Tsipas, D.N.: Model for determining mechanical properties of aluminum closed-cell foams. Theor. Appl. Fract. Mech. 43, 157–167 (2005)CrossRefGoogle Scholar
  14. 14.
    Paul, A., Ramamurty, U.: Strain rate sensitivity of a closed-cell aluminum foam. Mater. Sci. Eng. A 281, 1–7 (2000)CrossRefGoogle Scholar
  15. 15.
    Dannemann, K.A., Lankford Jr, J.: High strain rate compression of closed-cell aluminium foams. Mater. Sci. Eng. A 293, 157–164 (2000)CrossRefGoogle Scholar
  16. 16.
    Ruan, D., Lu, G., Chen, F.L., Siores, E.: Compressive behaviour of aluminium foams at low and medium strain rates. Compos. Struct. 57, 331–336 (2002)CrossRefGoogle Scholar
  17. 17.
    Montanini, R.: Measurement of strain rate sensitivity of aluminium foams for energy dissipation. Int. J. Mech. Sci. 47, 26–42 (2005)CrossRefGoogle Scholar
  18. 18.
    Yi, F., Zhu, Z., Zu, F., Hu, S., Yi, P.: Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams. Mater. Charact. 47, 417–422 (2001)CrossRefGoogle Scholar
  19. 19.
    Edwin Raj, R., Parameswaran, V., Daniel, B.S.S.: Comparison of quasi-static and dynamic compression behavior of closed-cell aluminum foam. Mater. Sci. Eng. A 526, 11–15 (2009)CrossRefGoogle Scholar
  20. 20.
    Hall, I.W., Guden, M., Yu, C.-J.: Crushing of aluminum closed cell foams: density and strain rate effects. Scripta Mater. 43, 515–521 (2000)CrossRefGoogle Scholar
  21. 21.
    Reu, P.L., Miller, T.J.: The application of high-speed digital image correlation. J. Strain Anal. Eng. 43, 673–688 (2008)CrossRefGoogle Scholar
  22. 22.
    Goglio, L., Vassoler, J.M., Peroni, M.: Measurement of longitudinal and transverse strain in an aluminium foam. Materialwiss. Werkstofftech. Mater. Sci. Eng. Technol. 42, 342–349 (2011)Google Scholar
  23. 23.
    Miyoshi, T., Itoh, M., Akiyama, S., Kitahara, A.: ALPORAS aluminum foam: production process, properties and applications. Adv. Eng. Mater. 2, 179–183 (2000)CrossRefGoogle Scholar
  24. 24.
    Pan, B., Xie, H.M., Xu, B.Q., Dai, F.L.: Performance of sub-pixel registration algorithms in digital image correlation. Meas. Sci. Technol. 17, 1615–1621 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luca Goglio
    • 1
    Email author
  • Marco Peroni
    • 2
  • Jakson Manfredini Vassoler
    • 3
  1. 1.Politecnico di TorinoTorinoItaly
  2. 2.EC Joint Research CentreIPSC InstituteIspraItaly
  3. 3.Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations