Skip to main content

Pharmakologische Grundlagen: Das Schicksal psychoaktiver Substanzen im menschlichen Körper

  • Chapter
  • First Online:
Book cover Handbuch Psychoaktive Substanzen

Part of the book series: Springer Reference Psychologie ((SRP))

  • 22k Accesses

Zusammenfassung

Grundlage der pharmakologischen Wirkung einer psychoaktiven Substanz ist die Substanzkonzentration am Wirkort. Für exogene Substanzen (Xenobiotika) ist diese abhängig von den pharmakokinetischen Eigenschaften der Substanz, also der Freisetzung, der Aufnahme in den Körper, der Verteilung und Verstoffwechslung im menschlichen Körper sowie der Elimination aus dem Körper. Dieses Kapitel stellt die grundlegenden Konzepte und die Prozesse, die die Konzentration am Wirkort psychoaktiver Substanz determinieren, qualitativ und quantitativ dar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood–brain barrier. Nature Reviews Neuroscience, 7(1), 41–53.

    Article  PubMed  Google Scholar 

  • Al Saabi, A., Allorge, D., Sauvage, F. L., Tournel, G., Gaulier, J. M., Marquet, P., & Picard, N. (2013). Involvement of UDP-glucuronosyltransferases UGT1A9 and UGT2B7 in ethanol glucuronidation, and interactions with common drugs of abuse. Drug Metabolism and Disposition, 41(3), 568–574.

    Article  PubMed  Google Scholar 

  • Antia, U., Tingle, M. D., & Russell, B. R. (2009). Metabolic interactions with piperazine-based ‚party pill‘ drugs. Journal of Pharmacy and Pharmacology, 61(7), 877–882.

    PubMed  Google Scholar 

  • Atkinson, A. J. (2009). Pharmacokinetics. In S. A. Waldman & A. Terzic (Hrsg.), Pharmacology and therapeutics: Principles to practice (S. 193–202). Philadelphia: Saunders Elsevier.

    Chapter  Google Scholar 

  • Atkinson, A. J., Ruo, T. I., & Frederiksen, M. C. (1991). Physiological basis of multicompartmental models of drug distribution. Trends in Pharmacological Sciences, 12(3), 96–101.

    Article  PubMed  Google Scholar 

  • Beckett, A. H., & Rowland, M. (1965). Urinary exrection kinetics of methylamphetamine in man. Nature, 206(990), 1260–1261.

    Article  PubMed  Google Scholar 

  • Bedada, W., de Andrés, F., Engidawork, E., Pohanka, A., Beck, O., Bertilsson, L., Llerena, A., & Aklillu, E. J. (2015). The Psychostimulant Khat (Catha edulis) inhibits CYP2D6 enzyme activity in humans. Journal of Clinical Psychopharmacology, 35(6), 694–699.

    Article  PubMed  Google Scholar 

  • Benet, L. Z., & Hoener, B. A. (2002). Changes in plasma protein binding have little clinical relevance. Clinical Pharmacology and Therapeutics, 71(3), 115–121.

    Article  PubMed  Google Scholar 

  • Benowitz, N. L., Porchet, H., Sheiner, L., & Jacob, P. (1988). Nicotine absorption and cardiovascular effects with smokeless tobacco use: Comparison with cigarettes and nicotine gum. Clinical Pharmacology and Therapeutics, 44(1), 23–28.

    Article  PubMed  Google Scholar 

  • Buxton, I. L. O., & Benet, L. Z. (2011). Pharmacokinetics: The dynamics of drug absorption, distribution, metabolism, and elimination. In L. Brunton, B. Chabner & B. Knollmann (Hrsg.), Goodman & Gilman’s the pharmacological basis of therapeutics (S. 17–39). New York: McGrawHill.

    Google Scholar 

  • Chang, Y., Moody, D. E., & McCance-Katz, E. F. (2006). Novel metabolites of buprenorphine detected in human liver microsomes and human urine. Drug Metabolism and Disposition, 34(3), 440–448.

    PubMed  Google Scholar 

  • Chimalakonda, K. C., Bratton, S. M., Le, V. H., Yiew, K. H., Dineva, A., Moran, C. L., James, L. P., Moran, J. H., & Radominska-Pandya, A. (2011). Conjugation of synthetic cannabinoids JWH-018 and JWH-073, metabolites by human UDP-glucuronosyltransferases. Drug Metabolism and Disposition, 39(10), 1967–1976.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chimalakonda, K. C., Seely, K. A., Bratton, S. M., Brents, L. K., Moran, C. L., Endres, G. W., James, L. P., Hollenberg, P. F., Prather, P. L., Radominska-Pandya, A., & Moran, J. H. (2012). Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/Spice: Identification of novel cannabinoid receptor ligands. Drug Metabolism and Disposition, 40(11), 2174–2184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffman, B. L., King, C. D., Rios, G. R., & Tephly, T. R. (1998). The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metabolism and Disposition, 26(1), 73–77.

    PubMed  Google Scholar 

  • Dayer, P., Desmeules, J., Leemann, T., & Striberni, R. (1988). Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl/bufI). Biochemical and Biophysical Research Communications, 152(1), 411–416.

    Article  PubMed  Google Scholar 

  • de Lange, E. C., & Hammarlund-Udenaes, M. (2015). Translational aspects of blood–brain barrier transport and central nervous system effects of drugs: from discovery to patients. Clinical Pharmacology and Therapeutics, 97(4), 380–394.

    Article  PubMed  Google Scholar 

  • Engels, F. K., de Jong, F. A., Sparreboom, A., Mathot, R. A., Loos, W. J., Kitzen, J. J., de Bruijn, P., Verwei, J., & Mathijssen, R. H. (2007). Medicinal cannabis does not influence the clinical pharmacokinetics of irinotecan and docetaxel. The Oncologist, 12(3), 291–300.

    Article  PubMed  Google Scholar 

  • Erratico, C., Negreira, N., Norouzizadeh, H., Covaci, A., Neels, H., Maudens, K., & Van Nuijs, A. L. (2015). In vitro and in vivo human metabolism of the synthetic cannabinoid AB-CHMINACA. Drug Testing and Analysis, 7(10), 866–876.

    Article  PubMed  Google Scholar 

  • Ewald, A. H., & Maurer, H. H. (2008). 2,5-Dimethoxyamphetamine-derived designer drugs: Studies on the identification of cytochrome P450 (CYP) isoenzymes involved in formation of their main metabolites and on their capability to inhibit CYP2D6. Toxicology Letters, 183(1–3), 52–57.

    Article  PubMed  Google Scholar 

  • Feyerabend, C., Ings, R. M., & Russel, M. A. (1985). Nicotine pharmacokinetics and its application to intake from smoking. British Journal of Clinical Pharmacology, 19(2), 239–247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher, M. B., Paine, M. F., Strelevitz, T. J., & Wrighton, S. A. (2001). The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metabolism Reviews, 33(3–4), 273–297.

    Article  PubMed  Google Scholar 

  • Flockhart, D. A. (2007). Drug interactions: Cytochrome P450 drug interaction table. Indiana University School of Medicine. http://medicine.iupui.edu/clinpharm/ddis/clinical-table. Zugegriffen am 01.12.2015.

  • Foster, D. J., Somogyi, A. A., & Bochner, F. (1999). Methadone N-demethylation in human liver microsomes: Lack of stereoselectivity and involvement of CYP3A4. British Journal of Clinical Pharmacology, 47(4), 403–412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerber, J. G., Rhodes, R. J., & Gal, J. (2004). Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality, 16(1), 36–44.

    Article  PubMed  Google Scholar 

  • Gonzalez, F. J., Coughtrie, M., & Tukey, R. H. (2011). Drug metabolism. In L. Brunton, B. Chabner & B. Knollmann (Hrsg.), Goodman & Gilman’s the pharmacological basis of therapeutics (S. 17–39). New York: McGrawHill.

    Google Scholar 

  • Guitton, J., Buronfosse, T., Désage, M., Lepape, A., Brazier, J. L., & Beaune, P. (1997). Possible involvement of multiple cytochrome P450S in fentanyl and sufentanil metabolism as opposed to alfentanil. Biochemical Pharmacology, 53(11), 1613–1619.

    Article  PubMed  Google Scholar 

  • Holland, M. L., Lau, D. T., Allen, J. D., & Arnold, J. C. (2007). The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids. British Journal of Pharmacology, 152(5), 815–824.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland, M. L., Allen, J. D., & Arnold, J. C. (2008). Interaction of plant cannabinoids with the multidrug transporter ABCC1 (MRP1). European Journal of Pharmacology, 591(1–3), 128–131.

    Article  PubMed  Google Scholar 

  • Holm, N. B., Nielsen, L. M., & Linnet, K. (2015). CYP3A4 mediates oxidative metabolism of the synthetic cannabinoid AKB-48. The AAPS Journal, 17(5), 1237–1245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchinson, M. R., Menelaou, A., Foster, D. J., Coller, J. K., & Somogyi, A. A. (2004). CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. British Journal of Clinical Pharmacology, 57(3), 287–297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, R., Yamaori, S., Takeda, S., Yamamoto, I., & Watanabe, K. (2011). Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Science, 89(5–6), 165–170.

    Article  Google Scholar 

  • Jiang, R., Yamaori, S., Okamoto, Y., Yamamoto, I., & Watanabe, K. (2013). Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metabolism and Pharmacokinetics, 28(4), 332–338.

    Article  PubMed  Google Scholar 

  • Jushchyshyn, M. I., Kent, U. M., & Hollenberg, P. F. (2003). The mechanism-based inactivation of human cytochrome P450 2B6 by phencyclidine. Drug Metabolism and Disposition, 31(1), 46–52.

    Article  PubMed  Google Scholar 

  • Kharasch, E. D., Hoffer, C., Whittington, D., & Sheffels, P. (2004). Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone. Clinical Pharmacology and Therapeutics, 76(3), 250–269.

    Article  PubMed  Google Scholar 

  • Laurenzana, E. M., & Owens, S. M. (1997). Metabolism of phencyclidine by human liver microsomes. Drug Metabolism and Disposition, 25(5), 557–563.

    PubMed  Google Scholar 

  • Lunell, E., Molander, L., Ekberg, K., & Wahren, J. (2000). Site of nicotine absorption from a vapour inhaler-comparison with cigarette smoking. European Journal of Clinical Pharmacology, 55(10), 737–741.

    Article  PubMed  Google Scholar 

  • Martinez, M. N., & Amidon, G. L. (2002). A mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals. Journal of Clinical Pharmacology, 42(6), 620–643.

    Article  PubMed  Google Scholar 

  • Maurer, H. H., Bickeboeller-Friedrich, J., Kraemer, T., & Peters, F. T. (2000). Toxicokinetics and analytical toxicology of amphetamine-derived designer drugs (‚Ecstasy‘). Toxicology Letters, 112(113), 133–142.

    Article  PubMed  Google Scholar 

  • Meyer, M. R., Bach, M., Welter, J., Bovens, M., Turcant, A., & Maurer, H. H. (2013). Ketamine-derived designer drug methoxetamine: Metabolism including isoenzyme kinetics and toxicological detectability using GC-MS and LC-(HR-)MSn. Analytical and Bioanalytical Chemistry, 405(19), 6307–6321.

    Article  PubMed  Google Scholar 

  • Morrissey, K. M., Wen, C. C., Johns, S. J., Zhang, L., Huang, S. M., & Giacomini, K. M. (2012). The UCSF-FDA TransPortal: A public drug transporter database. Clinical Pharmacology and Therapeutics, 92(5), 545–546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndikum-Moffor, F. M., Schoeb, T. R., & Roberts, S. M. (1998). Liver toxicity from norcocaine nitroxide, an N-oxidative metabolite of cocaine. Journal of Pharmacology and Experimental Therapeutics, 284(1), 413–419.

    PubMed  Google Scholar 

  • Nebert, D. W., Nelson, D. R., Coon, M. J., Estabrook, R. W., Feyereisen, R., Fujii-Kuriyama, Y., Gonzalez, F. J., Guengerich, F. P., Gunsalus, I. C., & Johnson, E. F. (1991). The P450 superfamily: Update on new sequences, gene mapping, and recommended nomenclature. DNA and Cell Biology, 10, 1–14.

    Article  PubMed  Google Scholar 

  • Negreira, N., Erratico, C., Kosjek, T., van Nuijs, A. L., Heath, E., Neels, H., & Covaci, A. (2015). In vitro phase I and phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol. Analytical and Bioanalytical Chemistry, 407(19), 5803–5816.

    Article  PubMed  Google Scholar 

  • Nielsen, L. M., Holm, N. B., Olsen, L., & Linnet, K. (2015). Cytochrome P450-mediated metabolism of the synthetic cannabinoids UR-144 and XLR-11. Drug Testing and Analysis. doi:10.1002/dta.1860.

    Google Scholar 

  • Nishimura, M., & Naito, S. (2005). Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metabolism and Pharmacokinetics, 20(6), 452–477.

    Article  PubMed  Google Scholar 

  • Norberg, A., Jones, A. W., Hahn, R. G., & Gabrielsson, J. L. (2003). Role of variability in explaining ethanol pharmacokinetics: Research and forensic applications. Clinical Pharmacokinetics, 42(1), 1–31.

    Article  PubMed  Google Scholar 

  • O'Mathúna, B., Farré, M., Rostami-Hodjegan, A., Yang, J., Cuyàs, E., Torrens, M., Pardo, R., Abanades, S., Maluf, S., Tucker, G. T., & de la Torre, R. (2008). The consequences of 3,4-methylenedioxymethamphetamine induced CYP2D6 inhibition in humans. Journal of Clinical Psychopharmacology, 28(5), 523–529.

    Article  PubMed  Google Scholar 

  • Paine, M. F., Hart, H. L., Ludington, S. S., Haining, R. L., Rettie, A. E., & Zeldin, D. C. (2006). The human intestinal cytochrome P450 „pie“. Drug Metabolism and Disposition, 34(5), 880–886.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen, A. J., Reitzel, L. A., Johansen, S. S., & Linnet, K. (2013a). In vitro metabolism studies on mephedrone and analysis of forensic cases. Drug Testing and Analysis, 5(6), 430–438.

    Article  PubMed  Google Scholar 

  • Pedersen, A. J., Petersen, T. H., & Linnet, K. (2013b). In vitro metabolism and pharmacokinetic studies on methylone. Drug Metabolism and Disposition, 41(6), 1247–1255.

    Article  PubMed  Google Scholar 

  • Pellinen, P., Honkakoski, P., Stenbäck, F., Niemitz, M., Alhava, E., Pelkonen, O., Lang, M. A., & Pasanen, M. (1994). Cocaine N-demethylation and the metabolism-related hepatotoxicity can be prevented by cytochrome P450 3A inhibitors. European Journal of Pharmacology, 270(1), 35–43.

    PubMed  Google Scholar 

  • Peters, F. T., Meyer, M. R., Theobald, D. S., & Maurer, H. H. (2007). Identification of cytochrome P450 enzymes involved in the metabolism of the new designer drug 4'-methyl-alpha-pyrrolidinobutyrophenone. Drug Metabolism and Disposition, 36(1), 163–168.

    Article  PubMed  Google Scholar 

  • Picard, N., Cresteil, T., Djebli, N., & Marquet, P. (2005). In vitro metabolism study of buprenorphine: Evidence for new metabolic pathways. Drug Metabolism and Disposition, 33(5), 689–695.

    Article  PubMed  Google Scholar 

  • Rowland, M., & Towzer, T. N. (2011a). Membranes and distribution. In M. Rowland & T. N. Towzer (Hrsg.), Clinical pharmacokinetics and pharmacodynamics: Concepts and applications (S. 73–110). Baltimore/Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Rowland, M., & Towzer, T. N. (2011b). Elimination. In M. Rowland & T. N. Towzer (Hrsg.), Clinical pharmacokinetics and pharmacodynamics: Concepts and applications (S. 111–157). Baltimore/Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Rowland, M., & Towzer, T. N. (2011c). Multiple dosing regimens. In M. Rowland & T. N. Towzer (Hrsg.), Clinical pharmacokinetics and pharmacodynamics: Concepts and applications (S. 293–329). Baltimore/Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Rowland, M., & Towzer, T. N. (2011d). Absorption. In M. Rowland & T. N. Towzer (Hrsg.), Clinical pharmacokinetics and pharmacodynamics: Concepts and applications (S. 183–215). Baltimore/Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Rowland, M., & Towzer, T. N. (2011e). Nonlinearities. In M. Rowland & T. N. Towzer (Hrsg.), Clinical pharmacokinetics and pharmacodynamics: Concepts and applications (S. 445–482). Baltimore/Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Rowland, M., & Towzer, T. N. (2011f). Drug interactions. In M. Rowland & T. N. Towzer (Hrsg.), Clinical pharmacokinetics and pharmacodynamics: Concepts and applications (S. 483–525). Baltimore/Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Samer, C. F., Daali, Y., Wagner, M., Hopfgartner, G., Eap, C. B., Rebsamen, M. C., Rossier, M. F., Hochstrasser, D., Dayer, P., & Desmeules, J. A. (2010). The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. British Journal of Pharmacology, 160(4), 907–918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider, N. G., Olmstead, R. E., Franzon, M. A., & Lunell, E. (2001). The nicotine inhaler: Clinical pharmacokinetics and comparison with other nicotine treatments. Clinical Pharmacokinetics, 40(9), 661–684.

    Article  PubMed  Google Scholar 

  • Staack, R. F., Theobald, D. S., Paul, L. D., Springer, D., Kraemer, T., & Maurer, H. H. (2004a). Identification of human cytochrome P450 2D6 as major enzyme involved in the O-demethylation of the designer drug p-methoxymethamphetamine. Drug Metabolism and Disposition, 32(4), 379–381.

    Article  PubMed  Google Scholar 

  • Staack, R. F., Theobald, D. S., Paul, L. D., Springer, D., Kraemer, T., & Maurer, H. H. (2004b). In vivo metabolism of the new designer drug 1-(4-methoxyphenyl)piperazine (MeOPP) in rat and identification of the human cytochrome P450 enzymes responsible for the major metabolic step. Xenobiotica, 34(2), 179–192.

    Article  PubMed  Google Scholar 

  • Stogner, J. M., Eassey, J. M., Baldwin, J. M., & Miller, B. L. (2014). Innovative alcohol use: Assessing the prevalence of alcohol without liquid and other non-oral routes of alcohol administration. Drug and Alcohol Dependence, 142, 74–78.

    Article  PubMed  Google Scholar 

  • Subrahmanyam, V., Renwick, A. B., Walters, D. G., Young, P. J., Price, R. J., Tonelli, A. P., & Lake, B. G. (2001). Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metabolism and Disposition, 29(8), 1146–1155.

    PubMed  Google Scholar 

  • Thomsen, R., Nielsen, L. M., Holm, N. B., Rasmussen, H. B., Linnet, K., & INDICES Consortium. (2015). Synthetic cannabimimetic agents metabolized by carboxylesterases. Drug Testing and Analysis, 7(7), 565–576.

    Article  PubMed  Google Scholar 

  • Wandel, C., Kim, R., Wood, M., & Wood, A. (2002). Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology, 96(4), 913–920.

    Article  PubMed  Google Scholar 

  • Wang, J. S., & DeVane, C. L. (2003). Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. Drug Metabolism and Disposition, 31(6), 742–747.

    Article  PubMed  Google Scholar 

  • Watanabe, K., Yamaori, S., Funahashi, T., Kimura, T., & Yamamoto, I. (2007). Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Science, 80(15), 1415–1419.

    Article  Google Scholar 

  • Weiss, J., Sawa, E., Riedel, K. D., Haefeli, W. E., & Mikus, G. (2008). In vitro metabolism of the opioid tilidine and interaction of tilidine and nortilidine with CYP3A4, CYP2C19, and CYP2D6. Naunyn Schmiedebergs Archives of Pharmacology, 378(3), 275–282.

    Article  PubMed  Google Scholar 

  • Welter, J., Kavanagh, P., Meyer, M. R., & Maurer, H. H. (2015a). Benzofuran analogues of amphetamine and methamphetamine: Studies on the metabolism and toxicological analysis of 5-APB and 5-MAPB in urine and plasma using GC-MS and LC-(HR)-MS(n) techniques. Analytical and Bioanalytical Chemistry, 407(5), 1371–1388.

    Article  PubMed  Google Scholar 

  • Welter, J., Brandt, S. D., Kavanagh, P., Meyer, M. R., & Maurer, H. H. (2015b). Metabolic fate, mass spectral fragmentation, detectability, and differentiation in urine of the benzofuran designer drugs 6-APB and 6-MAPB in comparison to their 5-isomers using GC-MS and LC-(HR)-MS(n) techniques. Analytical and Bioanalytical Chemistry, 407(12), 3457–3470.

    Article  PubMed  Google Scholar 

  • Westmoreland C.L., Hoke J.F., Sebel P.S., Hug C.C., Muir K.T. (1993). Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery. Anesthesiology, 79(5), 893–903.

    Article  PubMed  Google Scholar 

  • Yamaori, S., Kushihara, M., Yamamoto, I., & Watanabe, K. (2010). Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes. Biochemical Pharmacology, 79(11), 1691–1698.

    Article  PubMed  Google Scholar 

  • Yamaori, S., Okamoto, Y., Yamamoto, I., & Watanabe, K. (2011a). Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for CYP2D6. Drug Metabolism and Disposition, 39(11), 2049–2056.

    Article  PubMed  Google Scholar 

  • Yamaori, S., Ebisawa, J., Okushima, Y., Yamamoto, I., & Watanabe, K. (2011b). Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: Role of phenolic hydroxyl groups in the resorcinol moiety. Life Science, 88(15–16), 730–736.

    Article  Google Scholar 

  • Yamaori, S., Koeda, K., Kushihara, M., Hada, Y., Yamamoto, I., & Watanabe, K. (2012). Comparison in the in vitro inhibitory effects of major phytocannabinoids and polycyclic aromatic hydrocarbons contained in marijuana smoke on cytochrome P450 2C9 activity. Drug Metabolism and Pharmacokinetics, 27(3), 294–300.

    Article  PubMed  Google Scholar 

  • Yamaori, S., Okushima, Y., Yamamoto, I., & Watanabe, K. (2014). Characterization of the structural determinants required for potent mechanism-based inhibition of human cytochrome P450 1A1 by cannabidiol. Chemico-Biological Interactions, 215, 62–68.

    Article  PubMed  Google Scholar 

  • Yamaori, S., Kinugasa, Y., Jiang, R., Takeda, S., Yamamoto, I., & Watanabe, K. (2015). Cannabidiol induces expression of human cytochrome P450 1A1 that is possibly mediated through aryl hydrocarbon receptor signaling in HepG2 cells. Life Science, 136, 87–93.

    Article  Google Scholar 

  • Yanagihara, Y., Kariya, S., Ohtani, M., Uchino, K., Aoyama, T., Yamamura, Y., & Iga, T. (2001). Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metabolism and Disposition, 29(6), 887–890.

    PubMed  Google Scholar 

  • Yubero-Lahoz, S., Pardo, R., Farré, M., O’Mahony, B., Torrens, M., Mustata, C., Pérez-Mañá, C., Carbó, M. L., & de la Torre, R. (2011). Sex differences in 3,4-methylenedioxymethamphetamine (MDMA; ecstasy)-induced cytochrome P450 2D6 inhibition in humans. Clinical Pharmacokinetics, 50(5), 319–329.

    Article  PubMed  Google Scholar 

  • Yubero-Lahoz, S., Pardo, R., Farre, M., Mathuna, B. Ó., Torrens, M., Mustata, C., Perez-Mañá, C., Langohr, K., Carbó, M. L., & de la Torre, R. (2012). Changes in CYP1A2 activity in humans after 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) administration using caffeine as a probe drug. Drug Metabolism and Pharmacokinetics, 27(6), 605–613.

    Article  PubMed  Google Scholar 

  • Zhu, H. J., Wang, J. S., Markowitz, J. S., Donovan, J. L., Gibson, B. B., Gefroh, H. A., & Devane, C. L. (2006). Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. Journal of Pharmacology and Experimental Therapeutics, 317(2), 850–857.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Hohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hohmann, N. (2018). Pharmakologische Grundlagen: Das Schicksal psychoaktiver Substanzen im menschlichen Körper. In: von Heyden, M., Jungaberle, H., Majić, T. (eds) Handbuch Psychoaktive Substanzen. Springer Reference Psychologie . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55125-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55125-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55124-6

  • Online ISBN: 978-3-642-55125-3

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics