Skip to main content

From Casimir to Zel’dovich

  • Chapter
  • First Online:
The Weight of the Vacuum

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

The Casimir effect predicted in 1948 was not initially seen as relevant to cosmology. For a long time the cosmological constant and the quantum mechanics of the vacuum lived separate lives. The situation only changed in the late 1960s. Inspired by a brief revival of interest in cosmological models with a positive cosmological constant, in 1968 Yakov Zel’dovich pointed out the significance of the constant in the context of quantum field theory. He also formulated the first version of what would be known as the cosmological-constant problem. With Zel’dovich’s work two historical strands were finally joined: the quantum vacuum and the energy density related to the cosmological constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, the fate of the cosmological constant since 1917 has been remarkably chequered. According to a later review, “The cosmological constant \(\varLambda \) is an idea whose time has come ... and gone ... and come ... and so on” (Carroll et al. 1992, p. 536). And according to a still later review, “It has been alternately reviled and praised, and it has been counted out so many times, only to stage one comeback after another” (Earman 2001, p. 189).

References

  • Bludman, S.A., Ruderman, M.A.: Induced cosmological constant expected above the phase transition restoring the broken symmetry. Phys. Rev. Lett. 38, 255–257 (1977)

    Article  ADS  Google Scholar 

  • Bohr, N.: Problems of elementary-particles physics. In: International Conference on Fundamental Particles, pp. 1–4. Cavendish Laboratory, Cambridge (1947)

    Google Scholar 

  • Bordag, M. (ed.): The Casimir Effect 50 Years Later. World Scientific, Singapore (1998)

    Google Scholar 

  • Carazza, B., Guidetti, G.P.: The Casimir electron model. Arch. Hist. Exact Sci. 35, 273–279 (1986)

    Google Scholar 

  • Carroll, S.M., Press, W.H., Turner, E.L.: The cosmological constant. Ann. Rev. Astron. Astrophys. 30, 499–542 (1992)

    Article  ADS  Google Scholar 

  • Casimir, H.B.G.: Introductory remarks on quantum electrodynamics. Physica 19, 846–849 (1953)

    Article  ADS  Google Scholar 

  • Dreitlein, J.: Broken symmetry and the cosmological constant. Phys. Rev. Lett. 33, 1243–1244 (1974)

    Article  ADS  Google Scholar 

  • Earman, J.: Lambda: the constant that refuses to die. Arch. Hist. Exact Sci. 55, 189–220 (2001)

    Article  MathSciNet  Google Scholar 

  • Gerdov, M.M.: Concerning the nature of the cosmological constant and the mechanism of gravitation of vacuum. JETP Lett. 13, 498–500 (1971)

    ADS  Google Scholar 

  • Gliner, É.B.: Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. Sov. Phys. JETP 22, 378–382 (1966)

    ADS  Google Scholar 

  • Gunn, J.E., Tinsley, B.M.: An accelerating universe. Nature 257, 454–457 (1975)

    Article  ADS  Google Scholar 

  • Jaffe, R.L.: Casimir effect and the quantum vacuum. Phys. Rev. D 72, 021301 (2005)

    Article  ADS  Google Scholar 

  • Kardashev, N.: Lemaître’s universe and observations. Astrophys. J. 150, L135–L139 (1967)

    Article  ADS  Google Scholar 

  • Kragh, H.: Steady-state cosmology and general relativity: reconciliation or conflict? In: Goenner, H. et al. (eds.) The Expanding Worlds of General Relativity, pp. 377–402. Birkhäuser, Boston (1999)

    Google Scholar 

  • Kragh, H.: Cosmology and Controversy, pp. 52–53. Princeton University Press, Princeton (1996)

    Google Scholar 

  • Kragh, H.: Continual fascination: the oscillating universe in modern cosmology. Sci. Context 22, 587–612 (2009)

    Article  Google Scholar 

  • Lamoreaux, S.K.: Demonstration of the Casimir force in the 0.6 to 6 \(\mu \)m range. Phys. Rev. Lett. 78, 5–8 (1997)

    Google Scholar 

  • Linde, A.D.: Is the cosmological constant a constant? JETP Lett. 19, 183–184. (The title stated in the journal, “Is the Lee constant a cosmological constant ?”, is a mistranslation, as Linde pointed out in an erratum.) (1974)

    Google Scholar 

  • McCrea, W.H.: Relativity theory and the creation of matter. Proc. Roy. Soc. A 206, 562–575 (1951)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Mohideen, U., Roy, A.: Precision measurement of the Casimir force from 0.1 to 0.9 microns. Phys. Rev. Lett. 81, 454904552 (1998)

    Google Scholar 

  • Overduin, J., Blome, H.-J., Hoell, J.: Wolfgang Priester: from the big bounce to the Lambda-dominated universe. Naturwissenschaften 94, 417–429 (2007)

    Google Scholar 

  • Pachner, J.: An oscillating isotropic universe without singularity. Mon. Not. Roy. Astron. Soc. 131, 173–176 (1965)

    ADS  Google Scholar 

  • Petrosian, V.: Confrontation of Lemaître models and the cosmological constant with observations. In: Longair, M.S. (ed.) Confrontation of Cosmological Theories with Observational Data, pp. 31–46. Reidel, Dordrecht (1974)

    Google Scholar 

  • Rowlinson, J.S.: A Scientific History of Intermolecular Forces. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  • Rugh, S.E., Zinkernagel, H., Cao, T.Y.: The Casimir effect and the interpretation of the vacuum. Stud. Hist. Phil. Mod. Phys. 3, 111–139 (1999)

    Google Scholar 

  • Shklovsky, I.: On the nature of the “standard” absorption spectrum of the quasi-stellar objects. Astrophys. J. 150, L1–L3 (1967)

    Article  ADS  Google Scholar 

  • Smeenk, C.: False vacuum: early universe cosmology and the development of inflation. In: Kox, A.J., Eisenstaedt, J. (eds.) The Universe of General Relativity, pp. 223–257. Birkhäuser, Boston (2005)

    Google Scholar 

  • Sparnaay, M.J.: The historical background of the Casimir effect. In: Sarlemijn, A., Sparnaay, M.J. (eds.) Physics in the Making: Essays on Developments in 20th Century Physics, pp. 235–246. North-Holland, Amsterdam (1989)

    Google Scholar 

  • Sparnaay, M.J.: Measurements of attractive forces between flat plates. Physica 24, 751–764 (1958)

    Article  ADS  Google Scholar 

  • Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Zel’dovich, Ya., B.: Cosmological constant and elementary particles. JETP Lett. 6, 316–317 (1967)

    Google Scholar 

  • Zel’dovich, Y.B.: The cosmological constant and the theory of elementary particles. Sovjet Physics Uspekhi 11, 381–393 (1968). Republished, with editorial introduction by V. Sahni and A. Krasinski, in Gen. Relativ. Grav. 40: 1557–1591 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge S. Kragh .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Kragh, H.S., Overduin, J.M. (2014). From Casimir to Zel’dovich. In: The Weight of the Vacuum. SpringerBriefs in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55090-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55090-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55089-8

  • Online ISBN: 978-3-642-55090-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics