The Accelerating Universe

Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


Improvements in detector technology, image analysis and other factors led to the definitive detection of dark energy in 1998 using the magnitude-redshift relation for Type Ia supernovae. However, the results were so shocking that even their own discoverers had trouble believing them at first. The rapid convergence of two independent and very different teams to a similar conclusion played a large part in convincing the cosmological community of the reality of a vacuum-dominated accelerating universe. But the deep theoretical issues regarding the status of the cosmological constant have only become murkier. We do not know why \(\varLambda \) is so much smaller than calculations based on quantum field theory would suggest; nor why the present energy densities of dark energy and matter should be so similar. In some senses, it appears that we are returning to a pre-Copernican view of the world, in which our composition and location in time are both special, even if our position in space is not.


Supernovae Cosmic microwave background Cosmological-constant problem Coincidence problem 


  1. Ade, P.A.R., et al.: Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. in press (2013) arXiv:1303.5076 [astro-ph]
  2. Allen, S.W., et al.: Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 353, 457–467 (2004)ADSCrossRefGoogle Scholar
  3. Balbi, A., et al.: Constraints on cosmological parameters from MAXIMA-1. Astrophys. J. 545, L1–L4 (2000)ADSCrossRefGoogle Scholar
  4. Bennett, C.L., et al.: First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. Ser. 148, 1–27 (2003)Google Scholar
  5. Carroll, S.M.: The cosmological constant. Living Rev. Relativ. 4, 1 (2001)ADSCrossRefGoogle Scholar
  6. Eisenstein, D.J., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560574 (2005)Google Scholar
  7. Filippenko, A.V.: Einstein’s biggest blunder? High-redshift supernovae and the accelerating universe. Publ. Astron. Soc. Pac. 113, 1441–1448 (2001)ADSCrossRefGoogle Scholar
  8. Hansen, L., et al.: A supernova at \(z=0.28\) and the rate of distant supernovae. Astron. Astrophys. 211, L9–L11 (1989)ADSGoogle Scholar
  9. Jaffe, A.H., et al.: Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR cosmic microwave background observations. Phys. Rev. Lett. 86, 3475 (2001)ADSCrossRefGoogle Scholar
  10. Komatsu, E., et al.: Seven-year Wilkinson Microwave Anistropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. 192, 18, 47 (2011)Google Scholar
  11. Lange, A.E., et al.: Cosmological parameters from the first results of Boomerang. Phys. Rev. D 63, 042001 (2001)ADSCrossRefGoogle Scholar
  12. Lineweaver, C.H.: CMBology. In:. Brainerd T.G, Kochanek C.S. (eds.) Gravitational Lensing: Recent Progress and Future Goals, Astronomical Society of the Pacific, Vol. 237, pp. 111–120, San Francisco (2001)Google Scholar
  13. MacTavish, C.J., et al.: Cosmological parameters from the 2003 flight of Boomerang. Astrophys. J. 647, 799–812 (2006)ADSCrossRefGoogle Scholar
  14. Mantz, A.B., et al.: Cosmology and astrophysics from relaxed galaxy clusters II: cosmological constraints. Mont. Not. R. Astron. Soc. 440, 2077–2098 (2014) arXiv:1402.6212 [astro-ph]
  15. McGaugh, S.S.: Boomerang data suggest a purely baryonic universe. Astrophys. J. 541, L33–L36 (2000)ADSCrossRefGoogle Scholar
  16. McGaugh, S.S.: Confrontation of modified Newtonian dynamics predictions with Wilkinson Microwave Anisotropy Probe first year data. Astrophys. J. 611, 26–39 (2004)Google Scholar
  17. Mehta, K.T., et al.: A 2 % distance to \(z=0.35\) by reconstructing baryon acoustic oscillations—III: cosmological measurements and interpretation. Mon. Not. R. Astron. Soc. 427, 2168–2179 (2012)ADSCrossRefGoogle Scholar
  18. Norgaard-Nielsen, H.U., et al.: The discovery of a type Ia supernova at a redshift of 0.31. Nature 339, 523–525 (1989)ADSCrossRefGoogle Scholar
  19. Overduin, J., Priester, W.: Problems of modern cosmology: how dominant is the vacuum? Naturwissenschaften 88, 229–248 (2001)ADSCrossRefGoogle Scholar
  20. Overduin, J.M., Wesson, P.S., Mashhoon, B.: Decaying dark energy in higher-dimensional gravity. Astron. Astrophys. 473, 727–731 (2007)ADSCrossRefzbMATHGoogle Scholar
  21. Pennypacker, C., et al.: Automated supernova discoveries: status of the Berkeley project. In E.B. Norman (ed.) Particle Astrophysics: Forefront Experimental Issues. Proceedings of a Workshop in Berkeley, California, pp. 188–189. World Scientific, Singapore, 8–10 Dec 1988 (1989)Google Scholar
  22. Perlmutter, S., et al.: The status of Berkeley’s realtime supernova search. In: Proceedings of the Ninth Santa Cruz Summer Workshop in Astronomy and Astrophysics, Springer, New York, 13–24 July 1987 (1988)Google Scholar
  23. Perlmutter, S., et al.: A supernova at \(z=0.458\) and implications for measuring the cosmological deceleration. Astrophys. J. 440, L41–L44 (1995)ADSCrossRefGoogle Scholar
  24. Perlmutter, S., et al.: Measurements of the cosmological parameters \(\Omega \) and \(\Lambda \) from the first seven supernovae at \(z\ge 0.35\). Astrophys. J. 483, 565–581 (1997)ADSCrossRefGoogle Scholar
  25. Perlmutter, S., et al.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)ADSCrossRefGoogle Scholar
  26. Phillips, M.M.: The absolute magnitudes of type Ia supernovae. Astrophys. J. 413, L105–L108 (1993)ADSCrossRefGoogle Scholar
  27. Pryke, C., et al.: Cosmological parameter extraction from the first season of observations with the Degree-scale Angular Scale Interferometer. Astrophys. J. 568, 46–51 (2002)Google Scholar
  28. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astrophys. J. 116, 1009–1038 (1998)Google Scholar
  29. Riess, A.G., et al.: New Hubble Space Telescope discoveries of type Ia supernovae at \(z > 1\): narrowing constraints on the early behavior of dark energy. Asrtophys. J. 659, 98–121 (2007)Google Scholar
  30. Rubiño-Martin, J.A., et al.: First results from the Very Small Array— IV. Cosmological parameter estimation. Mon. Not. R. Astron. Soc. 341, 1084–1092 (2003)Google Scholar
  31. Schmidt, B.P., et al.: The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. Astrophys. J. 507, 46–63 (1998)ADSCrossRefGoogle Scholar
  32. Sherwin, B.D., et al.: Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements. Phys. Rev. Lett. 107, 021302 (2011)Google Scholar
  33. Sievers, J.L., et al.: Cosmological parameters from Cosmic Background Imager observations and comparisons with Boomerang, DASI and MAXIMA. Astrophys. J. 591, 599–622 (2003)Google Scholar
  34. Suzuki, N., et al.: The Hubble Space Telescope cluster supernova survey. V. Improving the dark-energy constraints above \(z {\>} 1\) and building an early-type-hosted supernova sample. Astrophys. J. 746, 85, 24 (2012)Google Scholar
  35. Tonry, J.L., et al.: Cosmological results from high-\(z\) supernovae. Astrophys. J. 594, 1–24 (2003)ADSCrossRefGoogle Scholar
  36. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  37. White, M., Scott, D., Pierpaoli, E.: Boomerang returns unexpectedly. Astrophys. J. 545, 1–5 (2000)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Centre for Science StudiesAarhus UniversityAarhusDenmark
  2. 2.Department of Physics, Astronomy and GeosciencesTowson UniversityTowsonUSA

Personalised recommendations