Skip to main content

Occam’s Razor and Simple Software Project Management

  • Chapter
  • First Online:
Book cover Software Project Management in a Changing World

Abstract

Occam’s Razor is a principle of parsimony for problem solving. It states that among competing hypotheses, the one with the fewest assumptions should be selected. This chapter applies Occam’s Razor to model-based project management. In this style of management, a manager uses models to guide their decisions. Ideally, such models should be supported by empirical data.

This chapter explores the limits to building models from data. Results from AI and data mining show that most data sets support only very simple models. For such data, some minimal modeling (supported by automatic tools) will produce models as good as anything else.

Automatic tools can exploit this “minimal models” effect. Such tools can automatically find very simple and very succinct recommendations about how to change and improve software projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Entia non sunt multiplicanda praeter necessitate,” which translates to “entities must not be multiplied beyond necessity.”

  2. 2.

    http://promisedata.googlecode.com

  3. 3.

    For example, if programming language experience (plex) takes the range (vl,l,n,h,vh), then range pruning might ignore all but, for example, h, vh.

  4. 4.

    A greedy search takes the next best idea and applies it. This process stops when the next idea does not improve on everything that has been seen before.

References

  • Ackoff RL (1967) Management misinformation systems. Manag Sci (December):319–331

    Google Scholar 

  • Bachant J, McDermott J (1984) R1 revisited: four years in the trenches. AI Magazine (Fall):21–32

    Google Scholar 

  • Boehm B (2000) Safe and simple software cost analysis. IEEE Softw (September):14–17

    Google Scholar 

  • Boehm B, Abts C, Chulani S (2000) Software development cost estimation approaches - a survey. Ann Softw Eng 10:177–205

    Article  MATH  Google Scholar 

  • Brooks FP (1975) The mythical man-month, Anniversary edn. Addison-Wesley, Boston, MA

    Google Scholar 

  • Brug A, Van de Bachant J, McDermott J (1986) The taming of R1. IEEE Exp (Fall):33–39

    Google Scholar 

  • Chang CL (1974) Finding prototypes for nearest neighbor classifiers. IEEE Trans Comput C-23:1179–1185

    Article  Google Scholar 

  • Dougherty J, Kohavi R, Sahami M (1995) Supervised and unsupervised discretization of continuous features. In: International conference on machine learning, San Francisco, CA, pp 194–202

    Google Scholar 

  • Farnstrom F, Lewis J, Elkan C (2000) Scalability for clustering algorithms revisited. SIGKDD Explor 2:51–57

    Article  Google Scholar 

  • Fayol H (1916) Administration industrielle et générale; prévoyance, organisation, commandement, coordination, controle. H. Dunod et E. Pinat, Paris, OCLC 40204128

    Google Scholar 

  • Feigenbaum E, McCorduck P (1983) The fifth generation. Addison-Wesley, Reading, MA

    Google Scholar 

  • Fenton N, Neil M, Marsh W, Hearty P, Radlinski L, Krause P (2007) Project data incorporating qualitative factors for improved software defect prediction. In: PROMISE’09

    Google Scholar 

  • Gay G, Menzies T, Davies M, Gundy-Burlet K (2010) Automatically finding the control variables for complex system behavior. Autom Softw Eng 17(4):439–468

    Article  Google Scholar 

  • Geletko D, Menzies T (2003) Model-based software testing via treatment learning. In: IEEE NASE SEW 2003

    Google Scholar 

  • Gupta C, Grossman R (2004) Genic: a single pass generalized incremental algorithm for clustering. In: 2004 SIAM international conference on data mining

    Google Scholar 

  • Hall MA, Holmes G (2003) Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans Knowl Data Eng 15(6):1437–1447

    Article  Google Scholar 

  • Kampenes VB, Dybå T, Hannay JE, Sjøberg D (2007) A systematic review of effect size in software engineering experiments. Inf Softw Technol 49(11–12):1073–1086

    Article  Google Scholar 

  • Kamvar SD, Klein D, Manning C (2003) Spectral learning. In: IJCAI’03, pp 561–566

    Google Scholar 

  • Kocaguneli E, Menzies T, Bener A, Keung J (2012) Exploiting the essential assumptions of analogy-based effort estimation. IEEE Trans Softw Eng 28(2):425–438

    Article  Google Scholar 

  • Kocaguneli E, Menzies T, Keung J, Cok D, Madachy R (2013a) Active learning and effort estimation: finding the essential content of software effort estimation data. IEEE Trans Softw Eng 39(8):1040–1053

    Article  Google Scholar 

  • Kocaguneli E, Zimmermann T, Bird C, Nagappan N, Menzies T (2013b) Distributed development considered harmful? ICSE 2013:882–890

    Google Scholar 

  • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324. http://citeseer.nj.nec.com/kohavi96wrappers.html

  • Larkin J, McDermott J, Simon DP, Simon H (1980) Expert and novice performance in solving physics problems. Science 208:1335–1342

    Article  Google Scholar 

  • Levina E, Bickel PJ (2004) Maximum likelihood estimation of intrinsic dimension. In NIPS

    Google Scholar 

  • Marcus S, McDermott J (1989) SALT: a knowledge acquisition language for propose-and-revise systems. Artif Intell 39(January):1–37

    Article  MATH  Google Scholar 

  • McCarthy J (1973) Lessons from the lighthill flap. http://www.aiai.ed.ac.uk/events/light-hill1973/1973-BBC-Lighthill-Controversy.mov

  • McDermott J (1981) R1’s formative years. AI Mag 2(2):21–29

    Google Scholar 

  • Menzies T, Hu Y (2003) Data mining for very busy people (November)

    Google Scholar 

  • Menzies T, Hu Y (2007) Just enough learning (of Association Rules): the TAR2 treatment learner. Artif Intell Rev 25:211–229

    Article  Google Scholar 

  • Menzies T, Sinsel E (2000) Practical large scale what-if queries: case studies with software risk assessment. In: Proceedings ASE 2000

    Google Scholar 

  • Menzies T, El-Rawas O, Hihn J, Feather M, Boehm B, Madachy R (2007) The business case for automated software engineering. In: ASE’07: proceedings of the twenty-second IEEE/ACM international conference on automated software engineering. ACM, New York, NY, pp 303–312

    Google Scholar 

  • Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A (2010) Defect prediction from static code features: current results, limitations, new approaches. Autom Softw Eng 17(4):375–407

    Article  Google Scholar 

  • Menzies T, Butcher A, Cok D, Marcus A, Layman L, Shull F, Turhan B, Zimmermann T (2012) Local vs. global lessons for defect prediction and effort estimation. IEEE Trans Softw Eng 39:822–834

    Article  Google Scholar 

  • Miller A (2002) Subset selection in regression, 2nd edn. Chapman & Hall, New York

    Book  MATH  Google Scholar 

  • Mintzberg H (1975) The manager’s job: folklore and fact. Harv Bus Rev (July–August):29–61

    Google Scholar 

  • Newell A (1982) The knowledge level. Artif Intell 18:87–127

    Article  Google Scholar 

  • Novak PK, Lavrač N, Webb GI (2009) Supervised descriptive rule discovery: a unifying survey of contrast set emerging pattern and subgroup mining. J Mach Learn Res 10(June):377–403

    MATH  Google Scholar 

  • Olvera-López J, Arturo J, Ariel Carrasco-Ochoa J, Martínez-Trinidad F, Kittler J (2010) A review of instance selection methods. Artif Intell Rev 34(2):133–143

    Article  Google Scholar 

  • Papakroni V (2013) Data carving: identifying and removing irrelevancies in the data. Lane Department of Computer Science and Electrical Engineering, West Virginia University

    Google Scholar 

  • Rosenbloom PS, Laird JE, Newell A (1993) The SOAR papers. The MIT Press, Cambridge, MA

    Google Scholar 

  • Simon H (1960) The new science of management decision. Prentice Hall, Englewood Cliffs, NJ

    Book  Google Scholar 

  • Simon H (1978) Rational decision-making in business organizations- a Nobel memorial lecture, Dec 8. http://goo.gl/E80Nyy

  • Simon H (1982) Models of bounded rationality, vol 2. MIT Press, Cambridge, MA

    Google Scholar 

  • Simon H (1996) The science of the artificial, 3rd edn. MIT Press, Cambridge, MA

    Google Scholar 

  • Valerdi R (2011) Convergence of expert opinion via the wideband Delphi method: an application in cost estimation models. In: Incose international symposium, Denver, CO

    Google Scholar 

  • Witten IH, Frank E (1999) Data mining: practical machine learning tools and techniques with java implementations. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Menzies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menzies, T. (2014). Occam’s Razor and Simple Software Project Management. In: Ruhe, G., Wohlin, C. (eds) Software Project Management in a Changing World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55035-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55035-5_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55034-8

  • Online ISBN: 978-3-642-55035-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics