Skip to main content

Source Localization and Tracking: A Sparsity-Exploiting Maximum a Posteriori Based Approach

  • Chapter
  • First Online:
Blind Source Separation

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

In this work, we explore the potential of sparse recovery algorithms for localization and tracking the direction-of-arrivals (DOA) of multiple targets using a limited number of noisy time samples collected from a small number of sensors. In target tracking problems, the targets are assumed to be moving with a small random angular acceleration. We show that the target tracking problem can be posed as a problem of recursively reconstructing a sequence of sparse signals where the support of the signals changing slowly with time. Here, one can use the support of last signal as a priori information to estimate the behavior of current signal. In particular, we propose a maximum a posteriori (MAP)-based approach to deal with the sparse recovery problem arising in tracking and detection of DOAs. We consider both narrowband and broadband scenarios. Numerical simulations demonstrate the effectiveness of the proposed algorithm. We found that the proposed algorithm can resolve and track closely spaced DOAs with a small number of sensors.

Research is supported by the Australian Research Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the real DOA estimation problem, \(E \ne 0\) and \(X,Y\) are complex valued. We deal with these issues in the next section.

References

  1. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: Advances in Neural Information Processing Systems, pp. 757–763. MIT Press, Cambridge (1996)

    Google Scholar 

  2. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  3. Blake, A.: Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 11(1), 2–12 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanding, W., Willett, P., Bar-Shalom, Y.: Multiple target tracking using maximum likelihood probabilistic data association. In: Aerospace Conference, 2007 IEEE, pp. 1–12 (2007). doi:10.1109/AERO.2007.353035

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  6. Capon, J.: High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57(8), 1408–1418 (1969)

    Article  Google Scholar 

  7. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14(10), 707–710 (2007)

    Article  Google Scholar 

  8. Chung, P.J., Bohme, J.F., Hero, A.O.: Tracking of multiple moving sources using recursive em algorithm. EURASIP J. Adv. Signal Process. 2005(1), 534, 685 (2005). doi:10.1155/ASP.2005.50. http://asp.eurasipjournals.com/content/2005/1/534685

  9. Chun-yu, K., Wen-Tao, F., Xin-hua, Z., Jun, L.: A kind of method for direction of arrival estimation based on blind source separation demixing matrix. In: Eighth International Conference on Natural Computation (ICNC), pp. 134–137 (2012)

    Google Scholar 

  10. Cotter, S.: Multiple snapshot matching pursuit for direction of arrival (doa) estimation. In: European Signal Processing Conference, Poznan, Poland, pp. 247–251 (2007)

    Google Scholar 

  11. Cotter, S., Rao, B., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)

    Article  MathSciNet  Google Scholar 

  12. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc B (Methodol.) 39(1), 1–38 (1977). http://www.jstor.org/stable/2984875

  13. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fuchs, J.J.: Linear programming in spectral estimation: application to array processing. In: Proceedings of the IEEE International Conference ICASSP-96 on Acoustics, Speech, and Signal Processing 1996, vol. 6, pp. 3161–3164 (1996). doi:10.1109/ICASSP.1996.550547

  15. Fuchs, J.J.: On the application of the global matched filter to doa estimation with uniform circular arrays. IEEE Trans. Signal Process. 49(4), 702–709 (2001)

    Article  Google Scholar 

  16. Gorodnitsky, I., Rao, B.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  17. Hyder, M., Mahata, K.: Maximum a posteriori estimation approach to sparse recovery. In: Seventeenth International Conference on Digital Signal Processing (DSP), pp. 1–6 (2011). doi:10.1109/ICDSP.2011.6004892

  18. Hyder, M., Mahata, K.: A robust algorithm for joint-sparse recovery. IEEE Signal Process. Lett. 16(12), 1091–1094 (2009). doi:10.1109/LSP.2009.2028107

    Article  Google Scholar 

  19. Hyder, M., Mahata, K.: Direction-of-arrival estimation using a mixed norm approximation. IEEE Trans. Signal Process. 58(9), 4646–4655 (2010). doi:10.1109/TSP.2010.2050477

    Article  MathSciNet  Google Scholar 

  20. Johnson, D.H., Dudgeon, D.E.: Array Signal Processing: Concepts and Techniques. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  21. Jutten, C., Herault, J.: Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24(1), 1–10 (1991)

    MATH  Google Scholar 

  22. Kang, C., Zhang, X., Han, D.: A new kind of method for DOA estimation based on blind source separation and mvdr beamforming. In: Fifth International Conference on Natural Computation, ICNC ’09., vol. 2, pp. 486–490 (2009)

    Google Scholar 

  23. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall Inc, Upper Saddle River (1993)

    MATH  Google Scholar 

  24. Khajehnejad, M., Xu, W., Avestimehr, A., Hassibi, B.: Analyzing weighted \(\ell _1\) minimization for sparse recovery with nonuniform sparse models. IEEE Trans. Signal Process. 59(5), 1985–2001 (2011)

    Article  MathSciNet  Google Scholar 

  25. Krim, H., Viberg, M.: Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    Article  Google Scholar 

  26. Malioutov, D., Cetin, M., Willsky, A.: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  Google Scholar 

  27. Moffet, A.: Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 16(2), 172–175 (1968). doi:10.1109/TAP.1968.1139138

    Article  Google Scholar 

  28. Mohimani, H., Babaie-Zadeh, M., Jutten, C.: A fast approach for overcomplete sparse decomposition based on smoothed \(\ell ^{0}\) norm. IEEE Trans. Signal Process. 57(1), 289–301 (2009)

    Article  MathSciNet  Google Scholar 

  29. Mukai, R., Sawada, H., Araki, S., Makino, S.: Blind source separation and DOA estimation using small 3-D microphone array. In Proc. HSCMA 2005, pp. d.9–10 (2005)

    Google Scholar 

  30. Park, S., Ryu, C., Lee, K.: Multiple target angle tracking algorithm using predicted angles. IEEE Trans. Aerosp. Electron. Syst. 30(2), 643–648 (1994)

    Article  Google Scholar 

  31. Rao, C., Sastry, C.R., Zhou, B.: Tracking the direction of arrival of multiple moving targets. IEEE Trans. Signal Process. 42(5), 1133–1144 (1994). doi:10.1109/78.295205

    Article  Google Scholar 

  32. Rojas, F., Puntonet, C., Rodriguez-Alvarez, M., Rojas, I., Martin-Clemente, R.: Blind source separation in post-nonlinear mixtures using competitive learning, simulated annealing, and a genetic algorithm. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 34(4), 407–416 (2004)

    Article  Google Scholar 

  33. Roy, R., Kailath, T.: ESPRIT—estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  Google Scholar 

  34. Sacchi, M., Ulrych, T., Walker, C.: Interpolation and extrapolation using a high-resolution discrete fourier transform. IEEE Trans. Signal Process. 46(1), 31–38 (1998)

    Article  MathSciNet  Google Scholar 

  35. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  36. Stoica, P., Sharman, K.C.: Maximum likelihood methods for direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 38(7), 1132–1143 (1990)

    Article  MATH  Google Scholar 

  37. Stoica, P., Moses, R.: Introduction to Spectral Analysis, 2nd edn. Prentice-Hall, Upper Saddle River (2004)

    Google Scholar 

  38. Trzasko, J., Manduca, A.: Relaxed conditions for sparse signal recovery with general concave priors. IEEE Trans. Signal Process. 57(11), 4347–4354 (2009)

    Article  MathSciNet  Google Scholar 

  39. Vaswani, N.: LS-CS-residual (LS-CS): compressive sensing on least squares residual. IEEE Trans. Signal Process. 58(8), 4108–4120 (2010)

    Article  MathSciNet  Google Scholar 

  40. Vaswani, N., Lu, W.: Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Trans. Signal Process. 58(9), 4595–4607 (2010)

    Article  MathSciNet  Google Scholar 

  41. Viberg, M., Ottersten, B.: Sensor array processing based on subspace fitting. IEEE Trans. Signal Process. 39(5), 1110–1121 (1991)

    Article  MATH  Google Scholar 

  42. Xu, L., Li, J., Stoica, P.: Target detection and parameter estimation for mimo radar systems. IEEE Trans. Aerosp. Electron. Syst. 44(3), 927–939 (2008)

    Article  Google Scholar 

  43. Xu, X., Ye, Z., Zhang, Y.: Doa estimation for mixed signals in the presence of mutual coupling. IEEE Trans. Signal Process. 57(9), 3523–3532 (2009)

    Article  MathSciNet  Google Scholar 

  44. Yan, H., Fan, H.H.: An algorithm for tracking multiple wideband cyclostationary sources. In: Thirteenth IEEE/SP Workshop on Statistical Signal Processing, pp. 497–502 (2005). doi:10.1109/SSP.2005.1628646

  45. Zhou, Y., Yip, P., Leung, H.: Tracking the direction-of-arrival of multiple moving targets by passive arrays: algorithm. IEEE Trans. Signal Process. 47(10), 2655–2666 (1999). doi:10.1109/78.790648

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Mashud Hyder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hyder, M.M., Mahata, K. (2014). Source Localization and Tracking: A Sparsity-Exploiting Maximum a Posteriori Based Approach. In: Naik, G., Wang, W. (eds) Blind Source Separation. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55016-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55016-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55015-7

  • Online ISBN: 978-3-642-55016-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics