Skip to main content

Semi-blind Functional Source Separation Algorithm from Non-invasive Electrophysiology to Neuroimaging

  • Chapter
  • First Online:
Blind Source Separation

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Neuroimaging, investigating how specific brain sources play a particular role in a definite cognitive or sensorimotor process, can be achieved from non-invasive electrophysiological (EEG, EMG, MEG) and multimodal (concurrent EEG-fMRI) recordings. However, especially for the non-invasive electrophysiological techniques, the signals measured at the scalp are a mixture of the contributions from multiple generators or sources added to background activity and system noise, meaning that it is often difficult to identify the dynamic activity of generators of interest starting from the electrode/sensor recordings. Although the most common method of overcoming this limitation is time-domain averaging with or without source localization, blind source separation (BSS) algorithms are becoming increasingly widely accepted as a way of extracting the different neuronal sources that contribute to the measured scalp signals without trial exclusion. The advantage of BSS or semi-blind source separation (semi-BSS) techniques compared to methods such as time-domain averaging lies in their ability to extract sources exploring the whole time evolving data. Taking into account the whole signal without averaging, it also provides a means suitable to investigate non-phase locked oscillatory processes and single-trial behaviour. This characteristic becomes a crucial issue when investigating combined EEG-fMRI data, particularly when the focus is on neurovascular coupling definitely dependent on single trial variability of the two datasets. In this context, this chapter describes a semi-BSS technique, Functional Source Separation (FSS), which is a tool to identify cerebral sources by exploiting a priori knowledge, such as spectral or evoked activity, which cannot be expressed by sources other than the one to be identified (functional fingerprint). In other words, FSS allows the identification of specific neuronal pools on the bases of their functional roles, independent of their spatial position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sect. 19.3.1 for more details.

  2. 2.

    See Sect. 19.3.2 for more details.

References

  1. Allen, P.J., Polizzi, G., Krakow, K., Fish, D.R., Lemieux, L.: Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8, 229–239 (1998)

    Article  Google Scholar 

  2. Allen, P.J., Josephs, O., Turner, R.: A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12, 230–239 (2000)

    Article  Google Scholar 

  3. Allison, T., McCarthy, G., Wood, C.C., Jones, S.J.: Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve: a review of scalp and intracranial recordings. Brain 114, 2465–2503 (1991)

    Article  Google Scholar 

  4. Barbati, G., Porcaro, C., Hadjipapas, A., Adjamian, P., Pizzella, V., Romani, G.-L., Seri, S., Tecchio, F., Barnes, G.R.: Functional source separation applied to induced visual gamma activity. Hum. Brain Mapp. 29, 131–141 (2008)

    Article  Google Scholar 

  5. Barbati, G., Sigismondi, R., Zappasodi, F., Porcaro, C., Graziadio, S., Valente, G., Balsi, M., Rossini, P.M., Tecchio, F.: Functional source separation from magnetoencephalographic signals. Hum. Brain Mapp. 27, 925–934 (2006)

    Article  Google Scholar 

  6. Barnes, G.R., Hillebrand, A.: Statistical flattening of MEG beamformer images. Hum. Brain Mapp. 18, 1–12 (2003)

    Article  Google Scholar 

  7. Bénar, C.G., Schön, D., Grimault, S., Nazarian, B., Burle, B., Roth, M., Badier, J.M., Marquis, P., Liegeois-Chauvel, C., Anton, J.L.: Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum. Brain Mapp. 28, 602–613 (2007)

    Article  Google Scholar 

  8. Betti, V., Zappasodi, F., Rossini, P.M., Aglioti, S., Tecchio, F.: Synchronous with your feeelings: sensorimotor gamma-band and empathy for pain. J. Neurosci. 29, 12384–12392 (2009)

    Article  Google Scholar 

  9. Brown, P., Salenius, S., Rothwell, J.C., Hari, R.: Cortical correlate of the Piper rhythm in humans. J. Neurophysiol. 80, 2911–2917 (1998)

    Google Scholar 

  10. Brown, P., Farmer, S.F., Halliday, D.M., Marsden, J., Rosenberg, J.R.: Coherent cortical and muscle discharge in cortical myoclonus. Brain 122, 461–472 (1999)

    Article  Google Scholar 

  11. Cottone, C., Tomasevic, L., Porcaro, C., Filligoi, G., Tecchio, F.: Physiological aging impacts the hemispheric balances of resting state primary somatosensory activities. Brain Topogr. 26, 186–199 (2013)

    Article  Google Scholar 

  12. Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D.Y., Engel, A.K.: Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identified the dynamics of performance monitoring. J. Neurosci. 25, 11730–11737 (2005)

    Article  Google Scholar 

  13. Debener, S., Ullsperger, M., Siegel, M., Engel, A.K.: Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn. Sci. 10, 558–563 (2006)

    Article  Google Scholar 

  14. Deco, G., Corbetta, M.: The dynamical balance of the brain at rest. Neuroscientist 17, 107–123 (2011)

    Article  Google Scholar 

  15. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)

    Article  Google Scholar 

  16. Di Pino, G., Porcaro, C., Tombini, M., Assenza, G., Pellegrino, G., Tecchio, F., Rossini, P.M.: A neurally-interfaced hand prosthesis tuned inter-hemispheric communication. Restor. Neurol. Neurosci. 30, 407–418 (2012)

    Google Scholar 

  17. Eichele, T., Specht, K., Moosmann, M., Jongsma, M.L.A., Nordby, H., Hugdahl, K.: Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc. Natl. Acad. Sci. USA 49, 17798–17803 (2005)

    Article  Google Scholar 

  18. Gross, J., Tass, P.A., Salenius, S., Hari, R., Freund, H., Schnitzler, A.: Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography. J. Physiol. 527, 623–631 (2000)

    Article  Google Scholar 

  19. Hadjipapas, A., Adjamian, P., Swettenham, J.B., Holliday, I.E., Barnes, G.R.: Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex. Neuroimage 35, 518–530 (2007)

    Article  Google Scholar 

  20. Hari, R., Kaukoranta, E.: Neuromagnetic studies of somatosensory system: principles and examples. Prog. Neurobiol. 24, 233–256 (1985)

    Article  Google Scholar 

  21. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  22. Kaas, J.H.: Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosci. 14, 137–167 (1991)

    Article  Google Scholar 

  23. Khan, O.I., Farooq, F., Akram, F., Choi, M.T., Han, S.M., Kim, T.S.: Robust extraction of P300 using constrained ICA for BCI applications. Med. Biol. Eng. Comput. 50, 231–241 (2012)

    Article  Google Scholar 

  24. Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., Kleinschmidt, A.: Electroencephalographic signatures of attentional and cognitive default moes in spontaneous activity fluctuations at rest. Proc. Natl. Acad. Sci. USA 100, 11053–11058 (2003)

    Article  Google Scholar 

  26. Lu, W., Rajapakse, J.C.: Approach and applications of constrained ICA. IEEE Trans. Neural Netw. 16, 203–212 (2005)

    Article  Google Scholar 

  27. Makeig, S., Debener, S., Onton, J., Delorme, A.: Mining event-related brain dynamics. Trends Cogn. Sci. 8, 204–210 (2004a)

    Article  Google Scholar 

  28. Makeig, S., Delorme, A., Westerfield, M., Jung, T.P., Townsend, J., Courchesne, E., Sejnowski, T.J.: Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biol. 6, 0747–0762 (2004b)

    Google Scholar 

  29. Mantini, D., Perrucci, M.G., Cugini, S., Ferretti, A., Romani, G.L., Del Gratta, C.: Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 34, 598–607 (2007)

    Article  Google Scholar 

  30. Melgari, J.M., Zappasodi, F., Porcaro, C., Tomasevic, L., Cassetta, E., Rossini, P.M., Tecchio, F.: Movement-induced uncoupling of primary sensory and motor areas in focal task-specific hand dystonia. Neuroscience 250, 434–445 (2013)

    Google Scholar 

  31. Mercier, C., Reilly, K.T., Vargas, C.D., Aballea, A., Sirigu, A.: Mapping phantom movement representations in the motor cortex of amputees. Brain 129(Pt 8), 2202–2210 (2006)

    Article  Google Scholar 

  32. Merzenich, M.M., Nelson, R.J., Stryker, M.P., Cynader, M.S., Schoppmann, A., Zook, J.M.: Somatosensory cortical map changes following digit amputation in adult monkeys. J. Comp. Neurol. 224, 591–605 (1984)

    Article  Google Scholar 

  33. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  Google Scholar 

  34. Muthukumaraswamy, S.D., Singh, K.D., Swettenham, J.B., Jones, D.K.: Visual gamma oscillations and evoked responses: variability, repeatability and structural MRI correlates. Neuroimage 49, 3349–3357 (2010)

    Article  Google Scholar 

  35. Oostenveld, R., Praamstra, P.: The five percent electrode system for high resolution EEG and ERP measurements. Clin. Neurophysiol. 112, 713–719 (2001)

    Article  Google Scholar 

  36. Oostenveld, R., Oostendorp, T.F.: Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull. Hum. Brain Mapp. 17, 179–192 (2002)

    Article  Google Scholar 

  37. Ostwald, D., Porcaro, C., Bagshaw, A.P.: An information theoretic approach to EEG-fMRI integration of visually evoked responses. Neuroimage 49, 498–516 (2010)

    Article  Google Scholar 

  38. Pascual-Marqui, R.D.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl D), 5–12 (2002)

    Google Scholar 

  39. Pellegrino, G., Tomasevic, L., Tombini, M., Assenza, G., Bravi, M., Sterzi, S., Giacobbe, V., Zollo, L., Guglielmelli, E., Cavallo, G., Vernieri, F., Tecchio, F.: Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation. Restor. Neurol. Neurosci. 30, 497–510 (2012)

    Google Scholar 

  40. Pittaccio, S., Zappasodi, F., Viscuso, S., Mastrolilli, F., Ercolani, M., Passarelli, F., Molteni, F., Besseghini, S., Rossini, P.M., Tecchio, F.: Primary sensory and motor cortex activities during voluntary and passive ankle mobilization by the SHADE orthosis. Hum. Brain Mapp. 32, 60–70 (2011)

    Article  Google Scholar 

  41. Pons, T.P., Garraghty, P.E., Ommaya, A.K., Kaas, J.H., Taub, E., Mishkin, M.: Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252, 1857–1860 (1991)

    Article  Google Scholar 

  42. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999)

    Article  Google Scholar 

  43. Porcaro, C., Barbati, G., Zappasodi, F., Rossini, P.M., Tecchio, F.: Hand sensory-motor cortical network assessed by functional source separation. Hum. Brain Mapp. 29, 70–81 (2008)

    Google Scholar 

  44. Porcaro, C., Coppola, G., Di Lorenzo, G., Zappasodi, F., Siracusano, A., Pierelli, F., Rossini, P.M., Tecchio, F., Seri, S.: Hand somatosensory subcortical and cortical sources assessed by functional source separation: an EEG study. Hum. Brain Mapp. 30, 660–674 (2009a)

    Article  Google Scholar 

  45. Porcaro, C., Coppola, G., Pierelli, F., Seri, S., Di Lorenzo, G., Tomasevic, L., Salustri, C., Tecchio, F.: Multiple frequency functional connectivity in the hand somatosensory network: an EEG study. Clin. Neurophysiol. 124, 1216–1224 (2013)

    Article  Google Scholar 

  46. Porcaro, C., Ostwald, D., Bagshaw, A.P.: Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI. Neuroimage 50, 112–123 (2010)

    Article  Google Scholar 

  47. Porcaro, C., Ostwald, D., Hadjipapas, A., Barnes, G.R., Bagshaw, A.P.: The relationship between the visual evoked potential and the gamma band investigated by blind and semi-blind methods. Neuroimage 56, 1059–1071 (2011)

    Article  Google Scholar 

  48. Porcaro, C., Zappasodi, F., Rossini, P.M., Tecchio, F.: Choice of multivariate autoregressive model order affecting real network functional connectivity estimate. Clin. Neurophysiol. 120, 436–448 (2009b)

    Article  Google Scholar 

  49. Raffin, E., Giraux, P., Reilly, K.T.: The moving phantom: motor execution or motor imagery? Cortex 48, 746–757 (2011)

    Article  Google Scholar 

  50. Raffin, E., Mattout, J., Reilly, K.T., Giraux, P.: Disentangling motor execution from motor imagery with the phantom limb. Brain 135(Pt 2), 582–595 (2012)

    Article  Google Scholar 

  51. Reilly, K.T., Mercier, C., Schieber, M.H., Sirigu, A.: Persistent hand motor commands in the amputees’ brain. Brain 129(Pt 8), 2211–2223 (2006)

    Article  Google Scholar 

  52. Siegel, M., Donner, T.H., Engel, A.K.: Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134 (2012)

    Google Scholar 

  53. Tecchio, F., Zappasodi, F., Tombini, M., Oliviero, A., Pasqualetti, P., Vernieri, F., Ercolani, M., Pizzella, V., Rossini, P.M.: Brain plasticity in recovery from stroke: an MEG assessment. Neuroimage 32, 1326–1334 (2006)

    Article  Google Scholar 

  54. Tecchio, F., Porcaro, C., Barbati, G., Zappasodi, F.: Functional source separation and hand cortical representation for BCI feature extraction. J. Physiol. (Review) 580, 703–721 (2007a)

    Google Scholar 

  55. Tecchio, F., Graziadio, S., Barbati, G., Sigismondi, R., Zappasodi, F., Porcaro, C., Valente, G., Balsi, M., Rossini, P.M.: Somatosensory dynamic gamma-band synchrony: a neural code of sensorimotor dexterity. Neuroimage 35, 185–193 (2007b)

    Article  Google Scholar 

  56. Tecchio, F., Zappasodi, F., Tombini, M., Caulo, M., Vernieri, F., Rossini, P.M.: Interhemispheric asymmetry of primary hand representation and recovery after stroke: a MEG study. Neuroimage 36, 1057–1064 (2007c)

    Article  Google Scholar 

  57. Tecchio, F., Zito, G., Zappasodi, F., Dell’Acqua, M.L., Landi, D., Nardo, D., Lupoi, N., Rossini, P.M., Filippi, M.M.: Intra-cortical connectivity in multiple sclerosis: a neurophysiological approach. Brain 131, 1783–1792 (2008a)

    Article  Google Scholar 

  58. Tecchio, F., Zappasodi, F., Porcaro, C., Barbati, G., Assenza, G., Salustri, C., Rossini, P.M.: High-gamma band activity of primary hand cortical areas: a sensorimotor feedback efficiency index. Neuroimage 40, 256–264 (2008b)

    Article  Google Scholar 

  59. Tombini, M., Rigosa, J., Zappasodi, F., Porcaro, C., Citi, L., Carpaneto, J., Rossini, P.M., Micera, S.: Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control. Neurorehabil. Neural Repair 26, 275–281 (2012)

    Article  Google Scholar 

  60. Wang, S., James, C.J.: Extracting rhythmic brain activity for brain-computer interfacing through constrained independent component analysis. Comput. Intell. Neurosci. 2007, 9 (2007). doi:10.1155/2007/41468

    Google Scholar 

  61. Wan, X., Riera, J., Iwata, K., Takahashi, M., Wakabayashi, T., Kawashima, R.: The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: implications for neurovascular coupling mechanism. Neuroimage 32, 616–625 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camillo Porcaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Porcaro, C., Tecchio, F. (2014). Semi-blind Functional Source Separation Algorithm from Non-invasive Electrophysiology to Neuroimaging. In: Naik, G., Wang, W. (eds) Blind Source Separation. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55016-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55016-4_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55015-7

  • Online ISBN: 978-3-642-55016-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics