Skip to main content

Molecular Mechanisms in Yeast Carbon Metabolism: Lipid Metabolism and Lipidomics

  • Chapter
  • First Online:

Abstract

Lipids play several essential roles in the biology and metabolism of eukaryotic cells. In addition to their structural role as constituents of cell membranes, they have been increasingly recognized as dynamic and vital molecules, involved in a variety of cellular processes. Examples are cell signalling, membrane trafficking and influencing the stability of protein complexes in membranes. This chapter provides an overview of lipid classes and metabolic pathways in yeast. Lipid metabolism involves various organelles such as the endoplasmic reticulum (ER), mitochondria, peroxisomes and lipid droplets (LD), which will be highlighted. Specific attention is devoted to examples of recently discovered key players in yeast lipid metabolism, which illustrate our improved understanding of cells as an interconnected biological system. This chapter comprises descriptions of regulatory networks, multifunctional enzymes and lipids that serve as modulators of their own synthesis. The last part of the chapter is dedicated to the increasing numbers of biotechnological processes based on lipid metabolism. Besides the prominent model organism Saccharomyces cerevisiae, other predominantly oleaginous yeasts are also included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ATP:

Adenosine triphosphate

CDP:

Cytidinediphosphate

CL:

Cardiolipin

CoA:

Coenzyme A

CTP:

Cytidine triphosphate

DAG:

Diacylglycerol

DGPP:

Diacylglycerol diphosphate

DMAPP:

Dimethylallyl diphosphate

ER:

Endoplasmic reticulum

ERMES:

ER-mitochondria encounter structure

FA:

Fatty acids

FIT:

Fat storage-inducing transmembrane proteins

FPP:

Farnesyl diphosphate

GGPP:

Geranylgeranyl diphosphate

GPI:

Glycosylphosphatidylinositol

GPP:

Geranyl diphosphate

IMM:

Inner mitochondrial membrane

IPC:

Inositol phosphorylceramide

IPP:

Isopentenyl diphosphate

LD:

Lipid droplets

MAM:

Mitochondria-associated membrane fraction

M(IP)2C:

Mannosyl (inositol phosphoryl)2 ceramide

MINOS:

Mitochondrial inner membrane organizing system

MIPC:

Mannosylinositol phosphorylceramide

Mt:

Mitochondria

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

Nu:

Nucleus

OMM:

Outer mitochondrial membrane

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PDR:

Pleiotropic drug response

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PIP:

Phosphatidylinositol phosphate

PL:

Phospholipids

PS:

Phosphatidylserine

PUFA:

Polyunsaturated FA

Px:

Peroxisomes

SE:

Steryl esters

SPT:

Serine palmitoyltransferase complex

TG:

Triacylglycerols

TORC2:

Target of rapamycin complex 2

UASINO :

Inositol-responsive upstream activating sequence element

References

  • Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A, Chapman KD, Goodman JM (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043–1055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez-Vasquez F, Riezman H, Hannun YA, Voit EO (2011) Mathematical modeling and validation of the ergosterol pathway in Saccharomyces cerevisiae. PLoS ONE 6:e28344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson MS, Muehlbacher M, Street IP, Proffitt J, Poulter CD (1989a) Isopentenyl diphosphate:dimethylallyl diphosphate isomerase. An improved purification of the enzyme and isolation of the gene from Saccharomyces cerevisiae. J Biol Chem 264:19169–19175

    CAS  PubMed  Google Scholar 

  • Anderson MS, Yarger JG, Burck CL, Poulter CD (1989b) Farnesyl diphosphate synthetase. Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae. J Biol Chem 264:19176–19184

    CAS  PubMed  Google Scholar 

  • Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J (2010) Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 106:86–96

    CAS  PubMed  Google Scholar 

  • Athenstaedt K, Daum G (1997) Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae. J Bacteriol 179:7611–7616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Athenstaedt K, Daum G (1999) Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem 266:1–16

    CAS  PubMed  Google Scholar 

  • Athenstaedt K, Daum G (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem 278:23317–23323

    CAS  PubMed  Google Scholar 

  • Athenstaedt K, Daum G (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J Biol Chem 280:37301–37309

    CAS  PubMed  Google Scholar 

  • Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G (1999a) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181:6441–6448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Athenstaedt K, Weys S, Paltauf F, Daum G (1999b) Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae. J Bacteriol 181:1458–1463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud J-M, Chardot T (2006) Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6:1450–1459

    CAS  PubMed  Google Scholar 

  • Bagnat M, Keränen S, Shevchenko A, Shevchenko A, Simons K (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 97:3254–3259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bard M, Downing JF (1981) Genetic and biochemical aspects of yeast sterol regulation involving 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Gen Microbiol 125:415–420

    CAS  PubMed  Google Scholar 

  • Beeler TJ, Fu D, Rivera J, Monaghan E, Gable K, Dunn TM (1997) SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide. Mol Gen Genet 255:570–579

    CAS  PubMed  Google Scholar 

  • Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H, Dunn T (1998) The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant. J Biol Chem 273:30688–30694

    CAS  PubMed  Google Scholar 

  • Beopoulos A, Nicaud J-M, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206

    CAS  PubMed  Google Scholar 

  • Beranek A, Rechberger G, Knauer H, Wolinski H, Kohlwein SD, Leber R (2009) Identification of a cardiolipin-specific phospholipase encoded by the gene CLD1 (YGR110W) in yeast. J Biol Chem 284:11572–11578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berchtold D, Piccolis M, Chiaruttini N, Riezman I, Riezman H, Roux A, Walther TC, Loewith R (2012) Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat Cell Biol 14:542–547

    CAS  PubMed  Google Scholar 

  • Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin C, Chapman KD, Anderson RGW, Goodman JM (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173:719–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birner R, Bürgermeister M, Schneiter R, Daum G (2001) Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae. Mol Biol Cell 12:997–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Black PN, DiRusso CC (2007) Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochimica et Biophysica Acta (BBA)-Molecular Cell Biol Lipids 1771:286–298

    CAS  Google Scholar 

  • Böttinger L, Horvath SE, Kleinschroth T, Hunte C, Daum G, Pfanner N, Becker T (2012) Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J Mol Biol 423:677–686

    PubMed  Google Scholar 

  • Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, Ejsing CS, Weissman JS (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463:1048–1053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carman GM, Han G-S (2011) Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu Rev Biochem 80:859–883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carman GM, Henry SA (2007) Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 282:37293–37297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chambon C, Ladeveze V, Servouse M, Blanchard L, Javelot C, Vladescu B, Karst F (1991) Sterol pathway in yeast. Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase. Lipids 26:633–636

    CAS  PubMed  Google Scholar 

  • Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681

    CAS  PubMed  Google Scholar 

  • Chang SC, Heacock PN, Clancey CJ, Dowhan W (1998a) The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae. J Biol Chem 273:9829–9836

    CAS  PubMed  Google Scholar 

  • Chang SC, Heacock PN, Mileykovskaya E, Voelker DR, Dowhan W (1998b) Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae. J Biol Chem 273:14933–14941

    CAS  PubMed  Google Scholar 

  • Chaturvedi D, Goswami A, Saikia PP, Barua NC, Rao PG (2010) Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem Soc Rev 39:435–454

    CAS  PubMed  Google Scholar 

  • Chen M, Hancock LC, Lopes JM (2007a) Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta 1771:310–321

    CAS  PubMed  Google Scholar 

  • Chen Q, Kazachkov M, Zheng Z, Zou J (2007b) The yeast acylglycerol acyltransferase LCA1 is a key component of Lands cycle for phosphatidylcholine turnover. FEBS Lett 581:5511–5516

    CAS  PubMed  Google Scholar 

  • Chen X, Li Z, Zhang X, Hu F, Ryu DDY, Bao J (2009) Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 159:591–604

    CAS  PubMed  Google Scholar 

  • Chirala SS, Kuziora MA, Spector DM, Wakil SJ (1987) Complementation of mutations and nucleotide sequence of FAS1 gene encoding beta subunit of yeast fatty acid synthase. J Biol Chem 262:4231–4240

    CAS  PubMed  Google Scholar 

  • Chirala SS, Zhong Q, Huang W, al-Feel W (1994) Analysis of FAS3/ACC regulatory region of Saccharomyces cerevisiae: identification of a functional UASINO and sequences responsible for fatty acid mediated repression. Nucleic Acids Res 22:412–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi H-S, Su W-M, Morgan JM, Han G-S, Xu Z, Karanasios E, Siniossoglou S, Carman GM (2011) Phosphorylation of phosphatidate phosphatase regulates its membrane association and physiological functions in Saccharomyces cerevisiae: identification of SER(602), THR(723), AND SER(744) as the sites phosphorylated by CDC28 (CDK1)-encoded cyclin-dependent kinase. J Biol Chem 286:1486–1498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhary V, Schneiter R (2009) Monitoring sterol uptake, acetylation, and export in yeast. Methods Mol Biol 580:221–232

    CAS  PubMed  Google Scholar 

  • Choudhary V, Schneiter R (2012) Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins. Proc Natl Acad Sci USA 109:16882–16887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung J-H, Lester RL, Dickson RC (2003) Sphingolipid requirement for generation of a functional v1 component of the vacuolar ATPase. J Biol Chem 278:28872–28881

    CAS  PubMed  Google Scholar 

  • Clancey CJ, Chang SC, Dowhan W (1993) Cloning of a gene (PSD1) encoding phosphatidylserine decarboxylase from Saccharomyces cerevisiae by complementation of an Escherichia coli mutant. J Biol Chem 268:24580–24590

    CAS  PubMed  Google Scholar 

  • Connerth M, Czabany T, Wagner A, Zellnig G, Leitner E, Steyrer E, Daum G (2010) Oleate inhibits steryl ester synthesis and causes liposensitivity in yeast. J Biol Chem 285:26832–26841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Connerth M, Tatsuta T, Haag M, Klecker T, Westermann B, Langer T (2012) Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science 338:815–818

    CAS  PubMed  Google Scholar 

  • Cordente AG, Curtin CD, Varela C, Pretorius IS (2012) Flavour-active wine yeasts. Appl Microbiol Biotechnol 96:601–618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowart LA, Obeid LM (2007) Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta 1771:421–431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crowley JH, Leak FW Jr, Shianna KV, Tove S, Parks LW (1998) A mutation in a purported regulatory gene affects control of sterol uptake in Saccharomyces cerevisiae. J Bacteriol 180:4177–4183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cullis PR, Hope MJ, Tilcock CP (1986) Lipid polymorphism and the roles of lipids in membranes. Chem Phys Lipids 40:127–144

    CAS  PubMed  Google Scholar 

  • Czabany T, Athenstaedt K, Daum G (2007) Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta 1771:299–309

    CAS  PubMed  Google Scholar 

  • Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, Ingolic E, Daum G (2008) Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem 283:17065–17074

    CAS  PubMed  Google Scholar 

  • Daum G (1985) Lipids of mitochondria. Biochim Biophys Acta 822:1–42

    CAS  PubMed  Google Scholar 

  • Daum G, Vance JE (1997) Import of lipids into mitochondria. Prog Lipid Res 36:103–130

    CAS  PubMed  Google Scholar 

  • Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    CAS  PubMed  Google Scholar 

  • De Jong B, Siewers V, Nielsen J (2012) Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol 23:624–630

    PubMed  Google Scholar 

  • Debelyy MO, Thoms S, Connerth M, Daum G, Erdmann R (2011) Involvement of the Saccharomyces cerevisiae hydrolase Ldh1p in lipid homeostasis. Eukaryot Cell 10:776–781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dennis EA (2009) Lipidomics joins the omics evolution. Proc Natl Acad Sci USA 106:2089–2090

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson RC, Nagiec EE, Wells GB, Nagiec MM, Lester RL (1997) Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J Biol Chem 272:29620–29625

    CAS  PubMed  Google Scholar 

  • Dickson RC, Sumanasekera C, Lester RL (2006) Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog Lipid Res 45:447–465

    CAS  PubMed  Google Scholar 

  • Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    CAS  PubMed  Google Scholar 

  • Dowhan W, Bogdanov M (2009) Lipid-dependent membrane protein topogenesis. Annu Rev Biochem 78:515–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dufour J-P, Malcorps P, Silcock P (2003) Control of ester synthesis during brewery fermentation. In: Smart K (ed) Brewing Yeast Fermentation Performance. Blackwell Publishing, Oxford, pp 213–233

    Google Scholar 

  • Dunn TM, Haak D, Monaghan E, Beeler TJ (1998) Synthesis of monohydroxylated inositolphosphorylceramide (IPC-C) in Saccharomyces cerevisiae requires Scs7p, a protein with both a cytochrome b5-like domain and a hydroxylase/desaturase domain. Yeast 14:311–321

    CAS  PubMed  Google Scholar 

  • Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    CAS  PubMed  Google Scholar 

  • Einerhand AW, Voorn-Brouwer TM, Erdmann R, Kunau WH, Tabak HF (1991) Regulation of transcription of the gene coding for peroxisomal 3-oxoacyl-CoA thiolase of Saccharomyces cerevisiae. Eur J Biochem 200:113–122

    CAS  PubMed  Google Scholar 

  • Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA 106:2136–2141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10:201–206

    CAS  PubMed  Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, Spener F, van Meer G, Wakelam MJO, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–14

    PubMed Central  PubMed  Google Scholar 

  • Fakas S, Qiu Y, Dixon JL, Han G-S, Ruggles KV, Garbarino J, Sturley SL, Carman GM (2011) Phosphatidate phosphatase activity plays key role in protection against fatty acid-induced toxicity in yeast. J Biol Chem 286:29074–29085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farese RV, Walther TC (2009) Lipid Droplets Finally Get a Little R-E-S-P-E-C-T. Cell 139:855–860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fei W, Wang H, Fu X, Bielby C, Yang H (2009) Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem J 424:61–67

    CAS  PubMed  Google Scholar 

  • Fernández-Murray JP, Gaspard GJ, Jesch SA, McMaster CR (2009) NTE1-encoded phosphatidylcholine phospholipase b regulates transcription of phospholipid biosynthetic genes. J Biol Chem 284:36034–36046

    PubMed Central  PubMed  Google Scholar 

  • Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Google Scholar 

  • Firestone GL, Sundar SN (2009) Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med 11:e32

    PubMed  Google Scholar 

  • Fischl AS, Carman GM (1983) Phosphatidylinositol biosynthesis in Saccharomyces cerevisiae: purification and properties of microsome-associated phosphatidylinositol synthase. J Bacteriol 154:304–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    CAS  PubMed  Google Scholar 

  • Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai Y, Hamachi M (1994) Molecular cloning, sequence analysis, and expression of the yeast alcohol acetyltransferase gene. Appl Environ Microbiol 60:2786–2792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita M, Umemura M, Yoko-o T, Jigami Y (2006) PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol Biol Cell 17:5253–5264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gable K, Slife H, Bacikova D, Monaghan E, Dunn TM (2000) Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J Biol Chem 275:7597–7603

    CAS  PubMed  Google Scholar 

  • Gaigg B, Timischl B, Corbino L, Schneiter R (2005) Synthesis of sphingolipids with very long chain fatty acids but not ergosterol is required for routing of newly synthesized plasma membrane ATPase to the cell surface of yeast. J Biol Chem 280:22515–22522

    CAS  PubMed  Google Scholar 

  • Gaigg B, Toulmay A, Schneiter R (2006) Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast. J Biol Chem 281:34135–34145

    CAS  PubMed  Google Scholar 

  • García-López MC, Pelechano V, Mirón-García MC, Garrido-Godino AI, García A, Calvo O, Werner M, Pérez-Ortín JE, Navarro F (2011) The conserved foot domain of RNA pol II associates with proteins involved in transcriptional initiation and/or early elongation. Genetics 189:1235–1248

    PubMed Central  PubMed  Google Scholar 

  • Georgiev AG, Sullivan DP, Kersting MC, Dittman JS, Beh CT, Menon AK (2011) Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM. Traffic 12:1341–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grilley MM, Stock SD, Dickson RC, Lester RL, Takemoto JY (1998) Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J Biol Chem 273:11062–11068

    CAS  PubMed  Google Scholar 

  • Grillitsch K, Daum G (2011) Triacylglycerol lipases of the yeast. Front Biol 6:219–230

    CAS  Google Scholar 

  • Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim Biophys Acta 1811:1165–1176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guan XL, Souza CM, Pichler H, Dewhurst G, Schaad O, Kajiwara K, Wakabayashi H, Ivanova T, Castillon GA, Piccolis M et al (2009) Functional Interactions between Sphingolipids and Sterols in Biological Membranes Regulating Cell Physiology. Mol Biol Cell 20:2083–2095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haak D, Gable K, Beeler T, Dunn T (1997) Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem 272:29704–29710

    CAS  PubMed  Google Scholar 

  • Han G-S, Wu W-I, Carman GM (2006) The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem 281:9210–9218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han G-S, O’Hara L, Carman GM, Siniossoglou S (2008) An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth. J Biol Chem 283:20433–20442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hearn JD, Lester RL, Dickson RC (2003) The uracil transporter Fur4p associates with lipid rafts. J Biol Chem 278:3679–3686

    CAS  PubMed  Google Scholar 

  • Heiderpriem RW, Livant PD, Parish EJ, Barbuch RJ, Broaddus MG, Bard M (1992) A simple method for the isolation of zymosterol from a sterol mutant of Saccharomyces cerevisiae. J Steroid Biochem Mol Biol 43:741–743

    CAS  PubMed  Google Scholar 

  • Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herrero O, Ramón D, Orejas M (2008) Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine. Metab Eng 10:78–86

    CAS  PubMed  Google Scholar 

  • Hiltunen JK, Wenzel B, Beyer A, Erdmann R, Fosså A, Kunau WH (1992) Peroxisomal multifunctional beta-oxidation protein of Saccharomyces cerevisiae. Molecular analysis of the FOX2 gene and gene product. J Biol Chem 267:6646–6653

    CAS  PubMed  Google Scholar 

  • Hiltunen JK, Autio KJ, Schonauer MS, Kursu VAS, Dieckmann CL, Kastaniotis AJ (2010) Mitochondrial fatty acid synthesis and respiration. Biochim Biophys Acta 1797:1195–1202

    CAS  PubMed  Google Scholar 

  • Hjelmstad RH, Bell RM (1992) Choline- and ethanolaminephosphotransferases from Saccharomyces cerevisiae. Meth Enzymol 209:272–279

    CAS  PubMed  Google Scholar 

  • Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195:323–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath A, Sütterlin C, Manning-Krieg U, Movva NR, Riezman H (1994) Ceramide synthesis enhances transport of GPI-anchored proteins to the Golgi apparatus in yeast. EMBO J 13:3687–3695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath SE, Wagner A, Steyrer E, Daum G (2011) Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1811:1030–1037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath SE, Böttinger L, Vögtle F-N, Wiedemann N, Meisinger C, Becker T, Daum G (2012) Processing and topology of the yeast mitochondrial phosphatidylserine decarboxylase 1. J Biol Chem 287:36744–36755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwanyshyn WM, Han G-S, Carman GM (2004) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc. J Biol Chem 279:21976–21983

    CAS  PubMed  Google Scholar 

  • Jacquier N, Schneiter R (2012) Mechanisms of sterol uptake and transport in yeast. J Steroid Biochem Mol Biol 129:70–78

    CAS  PubMed  Google Scholar 

  • Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124:2424–2437

    CAS  PubMed  Google Scholar 

  • Jahnke L, Klein HP (1983) Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae. J Bacteriol 155:488–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jain S, Stanford N, Bhagwat N, Seiler B, Costanzo M, Boone C, Oelkers P (2007) Identification of a novel lysophospholipid acyltransferase in Saccharomyces cerevisiae. J Biol Chem 282:30562–30569

    CAS  PubMed  Google Scholar 

  • Janssen MJ, Koorengevel MC, de Kruijff B, de Kroon AI (2000) The phosphatidylcholine to phosphatidylethanolamine ratio of Saccharomyces cerevisiae varies with the growth phase. Yeast 16:641–650

    CAS  PubMed  Google Scholar 

  • Jiang F, Rizavi HS, Greenberg ML (1997) Cardiolipin is not essential for the growth of Saccharomyces cerevisiae on fermentable or non-fermentable carbon sources. Mol Microbiol 26:481–491

    Google Scholar 

  • Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karpichev IV, Cornivelli L, Small GM (2002) Multiple regulatory roles of a novel Saccharomyces cerevisiae protein, encoded by YOL002c, in lipid and phosphate metabolism. J Biol Chem 277:19609–19617

    CAS  PubMed  Google Scholar 

  • Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem 222:193–214

    CAS  PubMed  Google Scholar 

  • Kim K, Kim KH, Storey MK, Voelker DR, Carman GM (1999) Isolation and characterization of the Saccharomyces cerevisiae EKI1 gene encoding ethanolamine kinase. J Biol Chem 274:14857–14866

    CAS  PubMed  Google Scholar 

  • Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K (2012) Flexibility of a eukaryotic lipidome–insights from yeast lipidomics. PLoS ONE 7:e35063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi SD, Nagiec MM (2003) Ceramide/long-chain base phosphate rheostat in Saccharomyces cerevisiae: regulation of ceramide synthesis by Elo3p and Cka2p. Eukaryot Cell 2:284–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Köffel R, Tiwari R, Falquet L, Schneiter R (2005) The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol Cell Biol 25:1655–1668

    PubMed Central  PubMed  Google Scholar 

  • Kohlwein SD (2010) Triacylglycerol homeostasis: insights from yeast. J Biol Chem 285:15663–15667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohlwein SD, Veenhuis M, van der Klei IJ (2012) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store ’em up or burn ’em down. Genetics 193:1–50

    Google Scholar 

  • Kolaczkowski M, Kolaczkowska A, Gaigg B, Schneiter R, Moye-Rowley WS (2004) Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae. Eukaryot Cell 3:880–892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kopec KO, Alva V, Lupas AN (2010) Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 26:1927–1931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kornmann B, Osman C, Walter P (2011) The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc Natl Acad Sci USA 108:14151–14156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kristan K, Rižner TL (2012) Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol 129:79–91

    CAS  PubMed  Google Scholar 

  • Ktistakis NT (2010) Lipid signaling and homeostasis: PA- is better than PA-H, but what about those PIPs? Sci Signal 3:pe46

    Google Scholar 

  • Kuchler K, Daum G, Paltauf F (1986) Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae. J Bacteriol 165:901–910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kupchak BR, Garitaonandia I, Villa NY, Mullen MB, Weaver MG, Regalla LM, Kendall EA, Lyons TJ (2007) Probing the mechanism of FET3 repression by Izh2p overexpression. Biochim Biophys Acta 1773:1124–1132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuranda K, François J, Palamarczyk G (2010) The isoprenoid pathway and transcriptional response to its inhibitors in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 10:14–27

    CAS  PubMed  Google Scholar 

  • Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein SD (2006) Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 281:491–500

    CAS  PubMed  Google Scholar 

  • Kurat CF, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein SD (2009) Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33:53–63

    CAS  PubMed  Google Scholar 

  • Kuroda T, Tani M, Moriguchi A, Tokunaga S, Higuchi T, Kitada S, Kuge O (2011) FMP30 is required for the maintenance of a normal cardiolipin level and mitochondrial morphology in the absence of mitochondrial phosphatidylethanolamine synthesis. Mol Microbiol 80:248–265

    CAS  PubMed  Google Scholar 

  • Lauwers E, Grossmann G, André B (2007) Evidence for coupled biogenesis of yeast Gap1 permease and sphingolipids: essential role in transport activity and normal control by ubiquitination. Mol Biol Cell 18:3068–3080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421–1428

    CAS  PubMed  Google Scholar 

  • Leber R, Landl K, Zinser E, Ahorn H, Spök A, Kohlwein SD, Turnowsky F, Daum G (1998) Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell 9:375–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SY, Kim HU, Park JH, Park JM, Kim TY (2009) Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov Today 14:78–88

    CAS  PubMed  Google Scholar 

  • Lees ND, Skaggs B, Kirsch DR, Bard M (1995) Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae–a review. Lipids 30:221–226

    CAS  PubMed  Google Scholar 

  • Linder ME, Deschenes RJ (2004) Model organisms lead the way to protein palmitoyltransferases. J Cell Sci 117:521–526

    CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    CAS  PubMed  Google Scholar 

  • Loewen CJR, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–1647

    CAS  PubMed  Google Scholar 

  • London E, Brown DA (2000) Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta 1508:182–195

    CAS  PubMed  Google Scholar 

  • Lorenz RT, Casey WM, Parks LW (1989) Structural discrimination in the sparking function of sterols in the yeast Saccharomyces cerevisiae. J Bacteriol 171:6169–6173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyons TJ, Villa NY, Regalla LM, Kupchak BR, Vagstad A, Eide DJ (2004) Metalloregulation of yeast membrane steroid receptor homologs. Proc Natl Acad Sci USA 101:5506–5511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madhavan A, Srivastava A, Kondo A, Bisaria VS (2012) Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit Rev Biotechnol 32:22–48

    CAS  PubMed  Google Scholar 

  • Mao C, Xu R, Bielawska A, Szulc ZM, Obeid LM (2000a) Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide. J Biol Chem 275:31369–31378

    CAS  PubMed  Google Scholar 

  • Mao C, Xu R, Bielawska A, Obeid LM (2000b) Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J Biol Chem 275:6876–6884

    CAS  PubMed  Google Scholar 

  • Matmati N, Hannun YA (2008) Thematic review series: sphingolipids. ISC1 (inositol phosphosphingolipid-phospholipase C), the yeast homologue of neutral sphingomyelinases. J Lipid Res 49:922–928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meisinger C, Pfannschmidt S, Rissler M, Milenkovic D, Becker T, Stojanovski D, Youngman MJ, Jensen RE, Chacinska A, Guiard B et al (2007) The morphology proteins Mdm12/Mmm1 function in the major beta-barrel assembly pathway of mitochondria. EMBO J 26:2229–2239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merkel O, Schmid PC, Paltauf F, Schmid HHO (2005) Presence and potential signaling function of N-acylethanolamines and their phospholipid precursors in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1734:215–219

    CAS  PubMed  Google Scholar 

  • Mesmin B, Maxfield FR (2009) Intracellular sterol dynamics. Biochimica et Biophysica Acta (BBA)-Molecular Cell Biol Lipids 1791:636–645

    CAS  Google Scholar 

  • Mignery GA, Pikaard CS, Park WD (1988) Molecular characterization of the patatin multigene family of potato. Gene 62:27–44

    CAS  PubMed  Google Scholar 

  • Misawa N (2011) Pathway engineering for functional isoprenoids. Curr Opin Biotechnol 22:627–633

    CAS  PubMed  Google Scholar 

  • Moir RD, Gross DA, Silver DL, Willis IM (2012) SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. PLoS Genet 8:e1002890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mora G, Scharnewski M, Fulda M (2012) Neutral lipid metabolism influences phospholipid synthesis and deacylation in Saccharomyces cerevisiae. PLoS ONE 7:e49269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Müllner H, Zweytick D, Leber R, Turnowsky F, Daum G (2004) Targeting of proteins involved in sterol biosynthesis to lipid particles of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1663:9–13

    PubMed  Google Scholar 

  • Müllner H, Deutsch G, Leitner E, Ingolic E, Daum G (2005) YEH2/YLR020c encodes a novel steryl ester hydrolase of the yeast Saccharomyces cerevisiae. J Biol Chem 280:13321–13328

    PubMed  Google Scholar 

  • Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24:109–115

    CAS  PubMed  Google Scholar 

  • Nadolski MJ, Linder ME (2007) Protein lipidation. FEBS J 274:5202–5210

    CAS  PubMed  Google Scholar 

  • Nagasawa N, Bogaki T, Iwamatsu A, Hamachi M, Kumagai C (1998) Cloning and nucleotide sequence of the alcohol acetyltransferase II gene (ATF2) from Saccharomyces cerevisiae Kyokai No. 7. Biosci Biotechnol Biochem 62:1852–1857

    CAS  PubMed  Google Scholar 

  • Nagiec MM, Baltisberger JA, Wells GB, Lester RL, Dickson RC (1994) The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proc Natl Acad Sci USA 91:7899–7902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL, Dickson RC (1997) Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 272:9809–9817

    CAS  PubMed  Google Scholar 

  • Nagiec MM, Skrzypek M, Nagiec EE, Lester RL, Dickson RC (1998) The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem 273:19437–19442

    CAS  PubMed  Google Scholar 

  • Natter K, Kohlwein SD (2012) Yeast and cancer cells—common principles in lipid metabolism. Biochim Biophys Acta 1831:314–326

    Google Scholar 

  • Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S, Fields S, Kohlwein SD (2005) The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Mol Cell Proteomics 4:662–672

    CAS  PubMed  Google Scholar 

  • Nes WD, Janssen GG, Crumley FG, Kalinowska M, Akihisa T (1993) The structural requirements of sterols for membrane function in Saccharomyces cerevisiae. Arch Biochem Biophys 300:724–733

    CAS  PubMed  Google Scholar 

  • Nguyen TT, Lewandowska A, Choi J-Y, Markgraf DF, Junker M, Bilgin M, Ejsing CS, Voelker DR, Rapoport TA, Shaw JM (2012) Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance. Traffic 13:880–890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nikawa J, Tsukagoshi Y, Yamashita S (1991) Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem 266:11184–11191

    CAS  PubMed  Google Scholar 

  • Niles BJ, Powers T (2012) Plasma membrane proteins Slm1 and Slm2 mediate activation of the AGC kinase Ypk1 by TORC2 and sphingolipids in S. cerevisiae. Cell Cycle 11:3745–3749

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Hara L, Han G-S, Peak-Chew S, Grimsey N, Carman GM, Siniossoglou S (2006) Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase. J Biol Chem 281:34537–34548

    PubMed Central  PubMed  Google Scholar 

  • Opekarová M, Tanner W (2003) Specific lipid requirements of membrane proteins–a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610:11–22

    PubMed  Google Scholar 

  • Osman C, Haag M, Wieland FT, Brügger B, Langer T (2010) A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J 29:1976–1987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Panwar SL, Moye-Rowley WS (2006) Long chain base tolerance in Saccharomyces cerevisiae is induced by retrograde signals from the mitochondria. J Biol Chem 281:6376–6384

    CAS  PubMed  Google Scholar 

  • Pascual F, Carman GM (2013) Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim Biophys Acta 1831:514–522

    Google Scholar 

  • Pichler H (2005) Modulating membrane properties-sterol cell biology in yeast. In: Daum G (ed) Cell biology and dynamics of yeast lipids, Research Signpost, Trivandrum (Kerala), pp. 179–199

    Google Scholar 

  • Ploegh HL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448:435–438

    CAS  PubMed  Google Scholar 

  • Ploier B, Scharwey M, Koch B, Schmidt C, Schatte J, Rechberger G et al (2013) Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae. J Biol Chem 288:36061–36072

    Google Scholar 

  • Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal β-oxidation–a metabolic pathway with multiple functions. Biochim Biophys Acta 1763:1413–1426

    CAS  PubMed  Google Scholar 

  • Polakowski T, Stahl U, Lang C (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol 49:66–71

    CAS  PubMed  Google Scholar 

  • Potting C, Wilmes C, Engmann T, Osman C, Langer T (2010) Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35. EMBO J 29:2888–2898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pu J, Ha CW, Zhang S, Jung JP, Huh W-K, Liu P (2011) Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell 2:487–496

    CAS  PubMed  Google Scholar 

  • Rajakumari S, Daum G (2010a) Janus-faced enzymes yeast Tgl3p and Tgl5p catalyze lipase and acyltransferase reactions. Mol Biol Cell 21:501–510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajakumari S, Daum G (2010b) Multiple functions as lipase, steryl ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the yeast Saccharomyces cerevisiae. J Biol Chem 285:15769–15776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajakumari S, Grillitsch K, Daum G (2008) Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 47:157–171

    CAS  PubMed  Google Scholar 

  • Rajakumari S, Rajasekharan R, Daum G (2010) Triacylglycerol lipolysis is linked to sphingolipid and phospholipid metabolism of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1801:1314–1322

    CAS  PubMed  Google Scholar 

  • Raychaudhuri S, Young BP, Espenshade PJ, Loewen C Jr (2012) Regulation of lipid metabolism: a tale of two yeasts. Curr Opin Cell Biol 24:502–508

    CAS  PubMed  Google Scholar 

  • Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335

    CAS  PubMed  Google Scholar 

  • Reue K, Brindley DN (2008) Thematic Review Series: Glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J Lipid Res 49:2493–2503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reue K, Dwyer JR (2009) Lipin proteins and metabolic homeostasis. J Lipid Res 50(Suppl):S109–S114

    PubMed Central  PubMed  Google Scholar 

  • Riad M, Mogos M, Thangathurai D, Lumb PD (2002) Steroids. Curr Opin Crit Care 8:281–284

    PubMed  Google Scholar 

  • Riekhof WR, Voelker DR (2006) Uptake and utilization of lyso-phosphatidylethanolamine by Saccharomyces cerevisiae. J Biol Chem 281:36588–36596

    CAS  PubMed  Google Scholar 

  • Riekhof WR, Wu J, Jones JL, Voelker DR (2007) Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in Saccharomyces cerevisiae. J Biol Chem 282:28344–28352

    CAS  PubMed  Google Scholar 

  • Roelants FM, Breslow DK, Muir A, Weissman JS, Thorner J (2011) Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 108:19222–19227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudge SA, Morris AJ, Engebrecht J (1998) Relocalization of phospholipase D activity mediates membrane formation during meiosis. J Cell Biol 140:81–90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruenwai R, Neiss A, Laoteng K, Vongsangnak W, Dalfard AB, Cheevadhanarak S, Petranovic D, Nielsen J (2011) Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress. Biotechnol J 6:343–356

    CAS  PubMed  Google Scholar 

  • Saba JD, Nara F, Bielawska A, Garrett S, Hannun YA (1997) The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J Biol Chem 272:26087–26090

    CAS  PubMed  Google Scholar 

  • Saerens SMG, Verstrepen KJ, Van Laere SDM, Voet ARD, Van Dijck P, Delvaux FR, Thevelein JM (2006) The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 281:4446–4456

    CAS  PubMed  Google Scholar 

  • Saerens SMG, Delvaux FR, Verstrepen KJ, Thevelein JM (2010) Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb Biotechnol 3:165–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sajbidor J, Ciesarová Z, Smogrovicová D (1995) Influence of ethanol on the lipid content and fatty acid composition of Saccharomyces cerevisiae. Folia Microbiol (Praha) 40:508–510

    CAS  Google Scholar 

  • Santos AXS, Riezman H (2012) Yeast as a model system for studying lipid homeostasis and function. FEBS Lett 586:2858–2867

    CAS  PubMed  Google Scholar 

  • Sasser T, Qiu Q-S, Karunakaran S, Padolina M, Reyes A, Flood B, Smith S, Gonzales C, Fratti RA (2012) Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion. J Biol Chem 287:2221–2236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawai H, Okamoto Y, Luberto C, Mao C, Bielawska A, Domae N, Hannun YA (2000) Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholipase C in Saccharomyces cerevisiae. J Biol Chem 275:39793–39798

    CAS  PubMed  Google Scholar 

  • Schneiter R, Brügger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G et al (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146:741–754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schorling S, Vallée B, Barz WP, Riezman H, Oesterhelt D (2001) Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Mol Biol Cell 12:3417–3427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schrag JD, Cygler M (1997) Lipases and alpha/beta hydrolase fold. Meth Enzymol 284:85–107

    CAS  PubMed  Google Scholar 

  • Schulz TA, Prinz WA (2007) Sterol transport in yeast and the oxysterol binding protein homologue (OSH) family. Biochimica et Biophysica Acta (BBA)-Molecular Cell Biol Lipids 1771:769–780

    CAS  Google Scholar 

  • Shang F, Wen S, Wang X, Tan T (2006) Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae. J Biotechnol 122:285–292

    CAS  PubMed  Google Scholar 

  • Shen H, Heacock PN, Clancey CJ, Dowhan W (1996) The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth. J Biol Chem 271:789–795

    CAS  PubMed  Google Scholar 

  • Simocková M, Holic R, Tahotná D, Patton-Vogt J, Griac P (2008) Yeast Pgc1p (Ypl206c) controls the amount of phosphatidylglycerol via a phospholipase C-type degradation mechanism. J Biol Chem 283:17107–17115

    PubMed Central  PubMed  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697

    PubMed Central  PubMed  Google Scholar 

  • Siniossoglou S, Santos-Rosa H, Rappsilber J, Mann M, Hurt E (1998) A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J 17:6449–6464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skrzypek M, Lester RL, Dickson RC (1997) Suppressor gene analysis reveals an essential role for sphingolipids in transport of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae. J Bacteriol 179:1513–1520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Souza CM, Pichler H (2007) Lipid requirements for endocytosis in yeast. Biochim Biophys Acta 1771:442–454

    CAS  PubMed  Google Scholar 

  • Spanova M, Daum G (2011) Squalene—biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Technol 113:1299–1320

    CAS  Google Scholar 

  • Spanova M, Czabany T, Zellnig G, Leitner E, Hapala I, Daum G (2010) Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae. J Biol Chem 285:6127–6133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spanova M, Zweytick D, Lohner K, Klug L, Leitner E, Hermetter A, Daum G (2012) Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1821:647–653

    Google Scholar 

  • Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA (1998) A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem 273:16635–16638

    CAS  PubMed  Google Scholar 

  • Strahl T, Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771:353–404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stroud DA, Oeljeklaus S, Wiese S, Bohnert M, Lewandrowski U, Sickmann A, Guiard B, van der Laan M, Warscheid B, Wiedemann N (2011) Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. J Mol Biol 413:743–750

    CAS  PubMed  Google Scholar 

  • Stukey JE, McDonough VM, Martin CE (1990) The OLE1 gene of Saccharomyces cerevisiae encodes the Δ9–fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265:20144–20149

    CAS  PubMed  Google Scholar 

  • Sumby KM, Grbin PR, Jiranek V (2010) Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem 121:1–16

    CAS  Google Scholar 

  • Sun Y, Taniguchi R, Tanoue D, Yamaji T, Takematsu H, Mori K, Fujita T, Kawasaki T, Kozutsumi Y (2000) Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol Cell Biol 20:4411–4419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura Y, Iijima M, Sesaki H (2010) Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation. EMBO J 29:2875–2887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura Y, Onguka O, Hobbs AEA, Jensen RE, Iijima M, Claypool SM, Sesaki H (2012) Role for two conserved intermembrane space proteins, Ups1p and Ups2p, in intra-mitochondrial phospholipid trafficking. J Biol Chem 287:15205–15218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka S, Maeda Y, Tashima Y, Kinoshita T (2004) Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem 279:14256–14263

    CAS  PubMed  Google Scholar 

  • Tehlivets O, Scheuringer K, Kohlwein SD (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255–270

    CAS  PubMed  Google Scholar 

  • Tevzadze GG, Pierce JV, Esposito RE (2007) Genetic evidence for a SPO1-dependent signaling pathway controlling meiotic progression in yeast. Genetics 175:1213–1227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thoms S, Debelyy MO, Nau K, Meyer HE, Erdmann R (2008) Lpx1p is a peroxisomal lipase required for normal peroxisome morphology. FEBS J 275:504–514

    CAS  PubMed  Google Scholar 

  • Thoms S, Debelyy MO, Connerth M, Daum G, Erdmann R (2011) The putative Saccharomyces cerevisiae hydrolase Ldh1p is localized to lipid droplets. Eukaryot Cell 10:770–775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tinkelenberg AH, Liu Y, Alcantara F, Khan S, Guo Z, Bard M, Sturley SL (2000) Mutations in yeast ARV1 alter intracellular sterol distribution and are complemented by human ARV1. J Biol Chem 275:40667–40670

    CAS  PubMed  Google Scholar 

  • Tiwari R, Köffel R, Schneiter R (2007) An acetylation/deacetylation cycle controls the export of sterols and steroids from S. cerevisiae. EMBO J 26:5109–5119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toth MJ, Huwyler L (1996) Molecular cloning and expression of the cDNAs encoding human and yeast mevalonate pyrophosphate decarboxylase. J Biol Chem 271:7895–7898

    CAS  PubMed  Google Scholar 

  • Trotter PJ, Voelker DR (1995) Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces cerevisiae. J Biol Chem 270:6062–6070

    CAS  PubMed  Google Scholar 

  • Tuller G, Hrastnik C, Achleitner G, Schiefthaler U, Klein F, Daum G (1998) YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae. FEBS Lett 421:15–18

    CAS  PubMed  Google Scholar 

  • Uemura H (2012) Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol 95:1–12

    CAS  PubMed  Google Scholar 

  • Uemura S, Kihara A, Inokuchi J-I, Igarashi Y (2003) Csg1p and newly identified Csh1p function in mannosylinositol phosphorylceramide synthesis by interacting with Csg2p. J Biol Chem 278:45049–45055

    CAS  PubMed  Google Scholar 

  • Vallée B, Riezman H (2005) Lip1p: a novel subunit of acyl-CoA ceramide synthase. EMBO J 24:730–741

    PubMed Central  PubMed  Google Scholar 

  • Van der Laan M, Bohnert M, Wiedemann N, Pfanner N (2012) Role of MINOS in mitochondrial membrane architecture and biogenesis. Trends Cell Biol 22:185–192

    PubMed  Google Scholar 

  • Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    PubMed Central  PubMed  Google Scholar 

  • Van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486

    PubMed Central  PubMed  Google Scholar 

  • Van Roermund CW, Drissen R, van Den Berg M, Ijlst L, Hettema EH, Tabak HF, Waterham HR, Wanders RJ (2001) Identification of a peroxisomal ATP carrier required for medium-chain fatty acid beta-oxidation and normal peroxisome proliferation in Saccharomyces cerevisiae. Mol Cell Biol 21:4321–4329

    PubMed Central  PubMed  Google Scholar 

  • Van Roermund CWT, Ijlst L, Majczak W, Waterham HR, Folkerts H, Wanders RJA, Hellingwerf KJ (2012) Peroxisomal fatty acid uptake mechanism in Saccharomyces cerevisiae. J Biol Chem 287:20144–20153

    PubMed Central  PubMed  Google Scholar 

  • Veen M, Lang C (2004) Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 63:635–646

    CAS  PubMed  Google Scholar 

  • Veen M, Stahl U, Lang C (2003) Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Res 4:87–95

    CAS  PubMed  Google Scholar 

  • Vehring S and Pomorski T (2005) Dynamics and regulation of phospholipid distribution in the yeast. In: Daum G (ed) Cell biology and dynamics of yeast lipids, Research Signpost, Trivandrum (Kerala), pp. 85–104

    Google Scholar 

  • Verger R (1997) “Interfacial activation” of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    CAS  Google Scholar 

  • Verstrepen KJ, Van Laere SDM, Vercammen J, Derdelinckx G, Dufour J-P, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2004) The Saccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles. Yeast 21:367–377

    CAS  PubMed  Google Scholar 

  • Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350

    Google Scholar 

  • Voelker DR (2003) New perspectives on the regulation of intermembrane glycerophospholipid traffic. J Lipid Res 44:441–449

    CAS  PubMed  Google Scholar 

  • Wagner A, Grillitsch K, Leitner E, Daum G (2009) Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1791:118–124

    CAS  PubMed  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    CAS  PubMed  Google Scholar 

  • Wilcox LJ, Balderes DA, Wharton B, Tinkelenberg AH, Rao G, Sturley SL (2002) Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. J Biol Chem 277:32466–32472

    CAS  PubMed  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    CAS  PubMed  Google Scholar 

  • Wolinski H, Kolb D, Hermann S, Koning RI, Kohlwein SD (2011) A role for seipin in lipid droplet dynamics and inheritance in yeast. J Cell Sci 124:3894–3904

    CAS  PubMed  Google Scholar 

  • Wriessnegger T, Pichler H (2013) Yeast metabolic engineering—Targeting sterol metabolism and terpenoid formation. Prog Lipid Res 52:277–293

    CAS  PubMed  Google Scholar 

  • Wu WI, Carman GM (1994) Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by nucleotides. J Biol Chem 269:29495–29501

    CAS  PubMed  Google Scholar 

  • Wu WI, Carman GM (1996) Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by phospholipids. Biochemistry 35:3790–3796

    CAS  PubMed  Google Scholar 

  • Wu WI, Lin YP, Wang E, Merrill AH Jr, Carman GM (1993) Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by sphingoid bases. J Biol Chem 268:13830–13837

    CAS  PubMed  Google Scholar 

  • Xue Z, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31:734–740

    CAS  PubMed  Google Scholar 

  • Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N (1994) Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58:1112–1114

    CAS  PubMed  Google Scholar 

  • Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley SL (1996) Sterol esterification in yeast: a two-gene process. Science 272:1353–1356

    CAS  PubMed  Google Scholar 

  • Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Aki T, Ono K, Uemura H (2007) Heterologous production of dihomo-gamma-linolenic acid in Saccharomyces cerevisiae. Appl Environ Microbiol 73:6965–6971

    CAS  PubMed Central  PubMed  Google Scholar 

  • York JD (2006) Regulation of nuclear processes by inositol polyphosphates. Biochim Biophys Acta 1761:552–559

    CAS  PubMed  Google Scholar 

  • Yu C, Kennedy NJ, Chang CC, Rothblatt JA (1996) Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase. J Biol Chem 271:24157–24163

    CAS  PubMed  Google Scholar 

  • Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102:6134–6140

    CAS  PubMed  Google Scholar 

  • Zanghellini J, Natter K, Jungreuthmayer C, Thalhammer A, Kurat CF, Gogg-Fassolter G, Kohlwein SD, von Grünberg H-H (2008) Quantitative modeling of triacylglycerol homeostasis in yeast–metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth. FEBS J 275:5552–5563

    CAS  PubMed  Google Scholar 

  • Zerbes RM, Bohnert M, Stroud DA, von der Malsburg K, Kram A, Oeljeklaus S, Warscheid B, Becker T, Wiedemann N, Veenhuis M et al (2012) Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains. J Mol Biol 422:183–191

    CAS  PubMed  Google Scholar 

  • Zhao X, Hu C, Wu S, Shen H, Zhao ZK (2011) Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. J Ind Microbiol Biotechnol 38:627–632

    CAS  PubMed  Google Scholar 

  • Zinser E, Daum G (1995) Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast 11:493–536

    CAS  PubMed  Google Scholar 

  • Zinser E, Sperka-Gottlieb CD, Fasch EV, Kohlwein SD, Paltauf F, Daum G (1991) Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol 173:2026–2034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zinser E, Paltauf F, Daum G (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol 175:2853–2858

    Google Scholar 

  • Zweytick D, Leitner E, Kohlwein SD, Yu C, Rothblatt J, Daum G (2000) Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. Eur J Biochem 267:1075–1082

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Roger Pain and Dr. Karlheinz Grillitsch for carefully reading the manuscript. Research in G.D.’s laboratory was financially supported by the Austrian Science Fund (FWF) project W901 (DK Molecular Enzymology). The work in U.P.’s laboratory was financially supported by the Slovenian Research Agency (ARRS) grants J1―6507 and P1―0207.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Günther Daum or Uroš Petrovič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ploier, B., Daum, G., Petrovič, U. (2014). Molecular Mechanisms in Yeast Carbon Metabolism: Lipid Metabolism and Lipidomics. In: Piškur, J., Compagno, C. (eds) Molecular Mechanisms in Yeast Carbon Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55013-3_8

Download citation

Publish with us

Policies and ethics