Skip to main content

Introduction to Carbon Metabolism in Yeast

  • Chapter
  • First Online:

Abstract

Yeast fermentation of different plant carbohydrate sources, like grape must, is one of the oldest human technologies and its origins date back to the Neolithic period. These fermentations were initially spontaneous and their chemical, physiological, or microbiological background were not understood until the late eighteenth century. In our chapter we review the basic facts on yeast carbon metabolism and especially on alcoholic fermentation. WE introduce the corresponding genes, enzymes, metabolic pathways and regulatory networks, and explain the basic physiological phenomena observed in different yeasts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander MA, Jeffries TW (1990) Respiratory efficiency and metabolize partitioning as regulatory phenomena in yeasts. Enz Microbiol Technol 12:2–19

    Article  CAS  Google Scholar 

  • Ahuatzi D, Riera A, Pelaez R, Herrero P, Moreno F (2007) Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution. J Biol Chem 282:4485–4493

    Article  CAS  PubMed  Google Scholar 

  • Bakker BM, Bro C, Kötter P, Luttik MAH, van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182:4730–4737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bakker BM, Overkamp KM, van Maris AJA, Kotter P, Luttik MAH, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Micr Rev 25:15–37

    Article  CAS  Google Scholar 

  • Barford JP, Hall RJ (1981) A mathematical model for the aerobic growth of Saccharomyces cerevisiae with a saturated respiratory capacity. Biotechnol Bioeng 23:1735–1762

    Article  CAS  Google Scholar 

  • Barnett JA (1998) A history of research on yeast 1: Work by chemists and biologists 1789–1850. Yeast 14:1439–1451

    Article  CAS  PubMed  Google Scholar 

  • Barnett JA (2003a) Beginnings of microbiology and biochemistry: the contribution of yeast research. Microbiology 149:557–567

    Article  CAS  PubMed  Google Scholar 

  • Barnett JA (2003b) A history of research on yeasts 5: the fermentation pathway. Yeast 20:509–543

    Article  CAS  PubMed  Google Scholar 

  • Barnett JA (2003c) A history of research on yeasts 6: the main respiratory pathway. Yeast 20:1015–1044

    Article  CAS  PubMed  Google Scholar 

  • Betina S, Garurnikova G, Haviernik P, Sabova L, Kolarov J (1995) Expression of the Aac2 gene encoding the major mitochondrial ADP/ATP translocator in Saccharomyces cerevisiae is controlled at the transcriptional level by oxygen, heme and HAP2 factor. Eur J Biochem 229:651–657

    Article  CAS  PubMed  Google Scholar 

  • Black PN, Di Russo CC (2007) Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim Biophys Acta 1771:286–298

    Article  CAS  PubMed  Google Scholar 

  • Casal M, Paiva S, Queirós O, Soares-Silva I (2008) Transport of carboxylic acids in yeasts. FEMS Microbiol Rev 32:974–994

    Article  CAS  PubMed  Google Scholar 

  • Casaregola S, Weiss S, Morel G (2011) New perspectives in hemiascomycetous yeast taxonomy. C R Biol. 334:590–598

    Article  PubMed  Google Scholar 

  • Ciriacy M (1977) Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression. Mol Gen Genet 154:213–220

    Article  CAS  PubMed  Google Scholar 

  • Clifton D, Fraenkel DG (1981) The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae. J Biol Chem 256:13074–13078

    CAS  PubMed  Google Scholar 

  • Diderich JA, Schepper M, van Hoek P, Luttik MAH, van Dijken JP, Pronk JT, Klaassen P, Boelens HFM, Texteira de Mattos MJ, van Dam K, Kruckeberg AL (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359

    Google Scholar 

  • De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    Article  PubMed  Google Scholar 

  • Dujon B (2010) Yeast evolutionary genomics. Nature Rev Genet 11:512–524

    Article  CAS  PubMed  Google Scholar 

  • Flores CL, Rodríguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24:507–529

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara H (2003) The Kluyver effect revisited. FEMS Yeast Res 3:327–331

    Article  CAS  PubMed  Google Scholar 

  • Galafassi S, Capusoni C, Moktaduzzaman M, Compagno C (2013) Utilization of nitrate abolishes the ‘‘Custers effect’’ in Dekkera bruxellensis and determines a different pattern of fermentation products. J Ind Microbiol Biotechnol 40:297–303

    Article  CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B et al (1996) Life with 6000 genes. Science 274:547–563

    Article  Google Scholar 

  • Goffrini P, Ferrero I, Donnoni C (2002) Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters. J Bacteriol 184:427–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hagman A, Säll T, Compagno C, Piskur J (2013) Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS ONE 8:e68734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxysomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64

    Article  CAS  PubMed  Google Scholar 

  • Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188:615–621

    Article  CAS  PubMed  Google Scholar 

  • Hohmann S (1993) Characterization of PDC2, a gene necessary for high-level expression of pyruvate decarbolylase structural genes in Saccharomyces cerevisiae. Mol Gen Genet 241:657–666

    Article  CAS  PubMed  Google Scholar 

  • Huynen MA, Dandekar T, Bork P (1999) Variation and evolution of the citric-acid cycle: a genomic perspective. Trends Microbiol 7:281–291

    Article  CAS  PubMed  Google Scholar 

  • Johnston M (1999) Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends Gen 15:29–33

    Article  CAS  Google Scholar 

  • Jia YK, Bécam AM, Herbert CJ (1997) The CIT3 gene of Saccharomyces cerevisiae encodes a second mitochondrial isoform of citrate synthase. Mol Microbiol 24:53–69

    Article  CAS  PubMed  Google Scholar 

  • Kaniak A, Xue D, Macool J, Kim JH, Johnoston M (2004) Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Euk Cell 3:221–231

    Article  CAS  Google Scholar 

  • Kappeli O (1986) Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microbiol Physiol 28:181–209

    Article  CAS  Google Scholar 

  • Klein CJL, Olsson L, Nielsen J (1998) Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions. Microbiology 144:13–24

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxanomic study, 5th edn. Elsevier, London

    Google Scholar 

  • Kwast KE, Lai L-C, Menda N, James DT III, Aref S, Burke PV (2002) Genomic analysis of anaerobically induced genes in Saccharomyces cerevisiae: functional role of Rox1 and other factors in mediating the anoxic response. J Bacteriol 184:250–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marion RM, Regev A, Segal E, Barash Y, Koller D, Friedman N, O’Shea EK (2004) Sfp1p is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci USA 101:14315–14322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLaughlin DJ, Hibbett DS, Lutzoni F, Spatafora JW, Vilgalys R (2009) The search for the fungal tree of life. Trends Microbiol 17:488–497

    Article  CAS  PubMed  Google Scholar 

  • Medina EM, Jones GW, Fitzpatrick DA (2011) Reconstructing the fungal tree of life using phylogenomics and a preliminary investigation of the distribution of yeast prion-like proteins in the fungal kingdom. J Mol Evol 73:116–133

    Article  CAS  PubMed  Google Scholar 

  • Merico A, Sulo P, Piskur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274:976–989

    Article  CAS  PubMed  Google Scholar 

  • Moore PA, Sagliocco FA, Wood RM, Brown AJ (1991) Yeast glycolytic mRNAs are differentially regulated. Mol Cell Biol 1:5330–5337

    Google Scholar 

  • Nissen TL, Schulze U, Nielsen J, Villadsen J (1997) Flux distribution in anaerobic, glucose-limited continuous cultutres of Saccharomyces cerevisiae. Microbiology 143:203–218

    Article  CAS  PubMed  Google Scholar 

  • Özcan S, Johnoston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol 63:554–569

    Google Scholar 

  • Pelaez R, Herrero P, Moreno F (2010) Functional domains of yeast hexokinase 2. Biochem J 432:181–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrik M, Kappeli O, Fiechter A (1983) An expanded concept for the glucose effect in the yeast Saccharomyces cerevisiae: involvement of short- and long-term regulation. J Gen Microbiol 129:43–49

    CAS  Google Scholar 

  • Piskur J (1994) Inheritance of the yeast mitochondrial genome. Plasmid 31:229–241

    Article  CAS  PubMed  Google Scholar 

  • Piskur J, Langkjaer RB (2004) Yeast genome sequencing: the power of comparative genomics. Mol Microbiol 53:381–389

    Article  CAS  PubMed  Google Scholar 

  • Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C (2006) How did Saccharomyces cerevisiae evolve to become a good brewer? Trends Gen 22:183–186

    Article  CAS  Google Scholar 

  • Postma E, Verduyn C, Scheffers WA, van Dijken JP (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Env Microbiol 55:468–477

    CAS  Google Scholar 

  • Pronk JT, Steensma HY, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633

    Article  CAS  PubMed  Google Scholar 

  • Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ et al (2011) Comparative functional genomics of the fission yeasts. Science 332:930–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rozpędowska E, Hellborg L, Ishchuk OP, Orhan F, Galafassi S, Merico A, Woolfit M, Compagno C, Piskur J (2011) Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nat Commun 2:302

    Article  PubMed Central  PubMed  Google Scholar 

  • Sabina J, Johnoston M (2009) Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae. J Biol Chem 284:29635–29642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sabova L, Zeman I, Supek F, Koralov J (1993) Transcriptional control of the AAC3 gene encoding mitochondrial ADP/ATP translocator in Saccharomyces cerevisiae by oxygen, heme and ROX1 factor. Eur J Biochem 213:547–553

    Article  CAS  PubMed  Google Scholar 

  • Saint-Prix F, Bonquist L, Dequin S (2004) Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology 150:2209–2220

    Article  CAS  PubMed  Google Scholar 

  • Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuller H-J (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43:139–160

    PubMed  Google Scholar 

  • Sherman F (1990) Studies of yeast cytochrome c: how and why they started and why they continued. Genetics 125:9–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shore D (1994) RAP1: a protean regulator in yeast. Trends Genet 10:408–412

    Article  CAS  PubMed  Google Scholar 

  • Smith PM, Fox JL, Winge DR (2012) Biogenesis of the cytochrome bc(1) complex and role of assembly factors. Biochim Biophys Acta 1817:872–882

    Article  CAS  PubMed  Google Scholar 

  • Soto IC, Fontanesi F, Liu J, Barrientos A (2012) Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core A. Biochim Biophys Acta 1817:883–897

    Google Scholar 

  • Strijbis K, Distel B (2010) Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 9:1809–1815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stuart RA (2008) Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria. J Bioenerg Biomembr 40:411–417

    Article  CAS  PubMed  Google Scholar 

  • Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA (2005) Resurrecting ancestral alcohol dehydrogenases from yeast. Nat Genet 37:630–635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trotter PJ (2001) The genetics of fatty acid metabolism in Saccharomyces cerevisiae. Annu Rev Nutr 21:97–119

    Article  CAS  PubMed  Google Scholar 

  • van den Berg MA, Steensma HY (1995) ACS2, a Saccharomyces cerevisiae gene encoding acetyl-cenzyme A synthetase, essential for growth on glucose. Eur J Biochem 231:704–713

    Article  PubMed  Google Scholar 

  • van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeast. FEMS Micr Rev 32:199–224

    Article  Google Scholar 

  • Veiga A, Arrabaca JD, Loureiro-Dias MC (2003) Cyanide-resistant respiration, a very frequent metabolic pathway in yeasts. FEMS Yeast Res 3:239–245

    Article  CAS  PubMed  Google Scholar 

  • Visser W, van der Baan AA, Batenburg-van der Vegte W, Scheffers WA, Kramer R, van Dijken JP (1990) Involvement of mitochondria in the assimilatory metabolism of Saccharomyces cerevisiae. Microbiology 140:3039–3046

    Google Scholar 

  • von Meyenburg HK (1969) Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch Mikrobiol 66:289–303

    Article  Google Scholar 

  • Verstrepen KJ, Iserentant d, Malcorps P, Derdelinckx G, van Dijck P, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR (2004) Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol 22:531–537

    Google Scholar 

  • Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J (2007) A system biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 96:134–145

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jure Piškur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Compagno, C., Dashko, S., Piškur, J. (2014). Introduction to Carbon Metabolism in Yeast. In: Piškur, J., Compagno, C. (eds) Molecular Mechanisms in Yeast Carbon Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55013-3_1

Download citation

Publish with us

Policies and ethics