Skip to main content

Abstract

Flexural behavior of mechanical systems can be used to identify the system characteristics including parts and system failure. In this chapter, the basics of flexural characteristics of a simple system are presented and the formations associated with the flexural behavior of the system are presented. Heating effects and thermal deflection in terms of flexural motion are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Al-Anazi, M.S.J. Hashmi, B.S. Yilbas, M. Sunar, Three-point bend testing of HVOF AMDRY 9954 coating on Ti–6Al–4 V alloy. J. Mater. Process. Technol. 174(1–3), 204–210 (2006)

    Article  Google Scholar 

  2. D. Al-Anazi, M.S.J. Hashmi, B.S. Yilbas, HVOF thermally sprayed CoNiCrAlY coatings on Ti-6Al-4 V alloy: high cycle fatigue properties of coating. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 221(4), 647–654 (2007)

    Article  Google Scholar 

  3. D. Al-Anazi, M.S.J. Hashmi, B.S. Yilbas, HVOF coating of AMDRY 9954 onto Ti-6Al-4 V alloy: fracture toughness measurement. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 221(4), 617–623 (2007)

    Article  Google Scholar 

  4. D. Al-Anazi, M.S.J. Hashmi, B.S. Yilbas, M. Sunar, in HVOF sprayed AMDRY 995 powders onto Ti-6 Al-4 V alloy:tensile properties, Conference on Advances in Material Processing Technology, AMPT06, Las Vegas, July 30–Aug 2 2006

    Google Scholar 

  5. D.M. Al-Anazi, Study of the mechanical and metallurgical properties of AMDRY 9954 HVOF coated Ti-6Al-4 V alloy. Ph.D. Thesis, School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland, 2007

    Google Scholar 

  6. A.F.M. Arif, B.S. Yilbas, Laser treatment of HVOF coating: modeling and measurement of residual stress in coating. J. Mater. Eng. Perform. 17(5), 644–650 (2008)

    Article  Google Scholar 

  7. Z.Y. Taha-al, M.S.J. Hashmi, B.S. Yilbas, Effect of WC on the residual stress in the laser treated HVOF coating. J. Mater. Process. Technol. 209(7), 3172–3181 (2009)

    Article  Google Scholar 

  8. Y.A. Al-Shehri, M.S.J. Hashmi, B.S. Yilbas, HVOF coating of metallic surfaces using different powders: fracture toughness measurement of resulting surfaces. Adv. Mater. Res. 445, 621–626 (2012)

    Article  Google Scholar 

  9. V.P.W. Shim, S.L. Toh, S.E. Quah, Impact-induced flexural waves in a Timoshenko beam-shearographic detection and analysis. Exp. Mech. 34, 340–348 (1994)

    Article  Google Scholar 

  10. W.R. Philp, D.J. Booth, N.D. Perry, Single laser excitation of structural vibration using power densities below the surface ablation threshold. J. Sound Vibr. 185, 643–654 (1995)

    Article  Google Scholar 

  11. A.L. Bardenstein, V.I. Bykov, D.I. Vaisburd, in Pulsed power electron and ion beams diagnostics based on simultaneous detection of acoustic longitudinal and flexural waves, IEEE International Pulsed Power Conference, Piscataway, NJ, vol. 1, pp. 390–395, 1995

    Google Scholar 

  12. J. Cheng, Y. Berthelot, Theory of laser generated transient Lamb waves in orthotropic plates. J. Phys. D Appl. Phys. 29(7), 1857–1867 (1996)

    Article  Google Scholar 

  13. M. Veidt, T. Liu, S. Kitipornchai, Flexural waves transmitted by a rectangular piezoceramic transducers. Smart Mater. Struct. 10, 681–688 (2001)

    Article  Google Scholar 

  14. M. Conrad, M. Sayir, Composite ceramic-metal plates tested with flexural waves and holography. Exp. Mech. 41, 412–420 (2001)

    Article  Google Scholar 

  15. G. Hang, L. Amit, in Flexural plate wave excitation using bulk modes, Proceedings of Ultrasonics Symposium, Atlanta, GA, vol. 1, pp. 799–802 (2001)

    Google Scholar 

  16. X. Jia, D. Auribault, M. de Billy, G. Quentin, in Laser generated flexural acoustic waves traveling along the tip of a wedge, Proceedings of IEEE Ultrasonics Symposium, Piscataway, NJ, vol. 2, pp. 637–640 (1993)

    Google Scholar 

  17. B.S. Yilbas, S.J. Hyder, S.Z. Shuja, Flexural wave generation and stress analysis during laser evaporative heating of steel. Proc. ImechE Part C J. Eng. Sci. 216, 531–542 (2002)

    Article  Google Scholar 

  18. J. Cheng, L. Wu, S. Zong, Thermoelastic response of pulsed photo thermal deformation of thin plates. J. Appl. Phys. 76, 716–722 (1994)

    Article  Google Scholar 

  19. K. Motegi, Ultrasound radiation into water by a Lamb wave device using a piezoelectric ceramic plate with spatially varying thickness. Ultrasonics 37, 405–412 (1999)

    Article  Google Scholar 

  20. T.T. Wu, Y.H. Lui, On the measurement of anisotropic elastic constants 9f fiber-reinforced composite plate using ultrasonic bulk wave and laser generated Lamb wave. Ultrasonics 37, 505–510 (1999)

    Article  Google Scholar 

  21. P.L. Ridgway, A.J. Hunt, M. Quinby-Hunt, R.E. Russo, Laser ultrasonics on moving paper. Ultrasonics 37, 395–403 (1999)

    Article  Google Scholar 

  22. S. Grondal, J. Assad, C. Delebarre, P. Blabquet, E. Moulin, Propagation of Lamb waves in multilayered plates: phase-velocity measurement. Meas. Sci. Technol. 10, 348–353 (1999)

    Article  Google Scholar 

  23. M.A. Johnson, Y.H. Berhelot, P.H. Brodeur, L.A. Jacobs, Investigation of laser generation of Lamb waves in copy paper. Ultrasonics 34, 703–710 (1999)

    Article  Google Scholar 

  24. N. Wakatsuki, K. Muzitani, K. Nagai, Propagation characteristics of plate-mode waves on wedge-shaped substrate. Jpn. J. Appl. Phys. 34(1), 2561–2564 (1995)

    Article  Google Scholar 

  25. H.G. Wang, Y.H. Guan, T.L. Chen, J.T. Zhang, A study of thermal stresses during laser quenching. J. Mater. Process. Technol. 63, 550–553 (1997)

    Article  Google Scholar 

  26. K. Li, P. Sheng, Plane stress model for fracture of ceramics during laser cutting. Int. J. Mach. Tools Manuf 35, 1493–1506 (1995)

    Article  Google Scholar 

  27. T. Elperin, G. Rudin, Thermo-elasticity problem for a multilayer coating-substrate assembly irradiated by a laser beam. Int. Commun. Heat Mass Trans. 23, 133–142 (1996)

    Article  Google Scholar 

  28. M.F. Modest, Transient elastic and viscoelastic thermal stresses during laser drilling of ceramics. ASME J. Heat Trans. 120, 892–898 (1998)

    Article  Google Scholar 

  29. M. Dubois, F. Enguehard, L. Bertland, Modeling of laser thermoelastic generation of ultrasound in an orthotropic medium. Appl. Phys. Lett. 65, 554–556 (1994)

    Article  Google Scholar 

  30. J. Cheng, L. Wu, S. Zong, Thermoelastic response of pulsed photothermal deformation of thin plates. J. Appl. Phys. 76, 716–722 (1994)

    Article  Google Scholar 

  31. R.J. Dewhurst, C. Edwards, A.D.W. Mckie, S.B. Palmer, Estimation of thin metal sheet using laser generated ultrasound. Appl. Phys. Lett. 51(14), 1066–1068 (1987)

    Article  Google Scholar 

  32. G. Sebastian, A. Jamal, D. Christophe, B. Pierrick, P. Emmanuel, Propagation of Lamb waves in multilayered plates: phase-velocity measurement. Measure. Sci. Technol. 10(5), 348–353 (1999)

    Article  Google Scholar 

  33. B.S. Yilbas, M. Faisal, Flexural waves generated due to pressure force during laser induced evaporation process. Laser Appl. 13, 118–124 (2001)

    Article  Google Scholar 

  34. B.G. Loh, P.I. Ro, Changing the propagation direction of flexural ultrasonic progressive waves by modulating excitation frequency. J. Sound Vibr. 238, 171–178 (2000)

    Article  Google Scholar 

  35. R.P. Szwerc, C.B. Burroughs, T.E. McDevitt, in Wave decomposition technique to separate longitudinal and flexural wave intensities. Proceedings of the National Conference on Noise Control Engineering, vol. 1, pp. 215–220 (1997)

    Google Scholar 

  36. H. Liao, P. Vaslin, Y. Yang, C. Coddet, Determination of residual stress distribution from in situ curvature measurements for thermally sprayed WC/Co coatings. J. Therm. Spray Technol. 6(2), 235–412 (1998)

    Article  Google Scholar 

  37. C.R.C. Lima, J. Nin, J.M. Guilemany, Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the modified layer removal method (MLRM). Surf. Coat. Technol. 200(12–13), 5963–5972 (2006)

    Article  Google Scholar 

  38. S.C. Gill, T.W. Clyne, Invetsigation of residual stress generation during thermal spraying by continuous curvature measurement. Thin Solid Films 250, 172–180 (1994)

    Article  Google Scholar 

  39. O. Kesler, J. Matejicek, S. Sampath, S. Suresh, T. Gnaeupel-Herold, P.C. Brand, H.J. Prask, Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 257(2), 215–224 (1998)

    Article  Google Scholar 

  40. J. Wang, P. Shortriya, K.S. Kim, Surface residual stress measurement using curvature interferometry. Exp. Mech. 46, 39–46 (2006)

    Article  Google Scholar 

  41. R. Ghafouri-Azar, J. Mostaghimi, S. Chandra, Modeling development of residual stresses in thermal spray coatings. Comput. Mater. Sci. 35, 13–26 (2006)

    Article  Google Scholar 

  42. L. Pejryd, J. Wigren, D.J. Greving, J.R. Shadley, E.F. Rybicki, Residual stresses as a factor in the selection of tungsten carbide coatings for a jet engine application. J. Therm. Spray Technol. 4(3), 268–274 (1995)

    Article  Google Scholar 

  43. F. Otsubo, K. Kishitake, T. Terasaki, Residual stress distribution in thermally sprayed self-fluxing alloy coatings. Mater. Trans. 46(11), 2473–2477 (2005)

    Article  Google Scholar 

  44. R.T.F. McGrann, D.J. Greving, J.R. Rybicki, B.E. Bodger, D.A. Somerville, Effect of residual stress in HVOF tungsten carbide coatings on the fatigue life in bending of thermal spray coated aluminum. J. Therm. Spray Technol. 7(4), 546–552 (1998)

    Article  Google Scholar 

  45. P. Bansal, P.H. Shipway, S.B. Leen, Finite element modeling of the fracture behavior of brittle coatings. Surf. Coat. Technol. 200(12–13), 5318–5327 (2006)

    Article  Google Scholar 

  46. H. Hamatani, Y. Miyazaki, Optimization of an electron beam remelting of HVOF sprayed alloys and carbides. Surf. Coat. Technol. 154, 176–181 (2002)

    Article  Google Scholar 

  47. M. Oksa, E. Turunen, T. Varis, Sealing of thermally sprayed coatings. Surf. Eng. 20(4), 251–254 (2004)

    Article  Google Scholar 

  48. J. Suutala, J. Tuominen, P. Vuoriso, Laser-assisted spraying and laser treatment of thermally sprayed coatings. Surf. Coat. Technol. 201, 1981–1987 (2006)

    Article  Google Scholar 

  49. A. Hjornhede, A. Nylund, Adhesion testing of thermally sprayed and laser deposited coatings. Surf. Coat. Technol. 184, 208–218 (2004)

    Article  Google Scholar 

  50. S. Kumari, A.S. Khanna, and A. Gasser, in The influence of laser glazing on morphology, composition and microhardness of thermal sprayed Ni-WC coatings, 4th International Surface Engineering Conference, St. Paul, MN, USA, 2005

    Google Scholar 

  51. M. Riabkina-Fishman, E. Rabkin, P. Levin, N. Frage, M.P. Dariel, A. Weisheit, R. Galun, B.L. Mordike, Laser produced functionally graded tungsten carbide coatings on M2 high-speed tool steel. Mater. Sci. Eng. 302, 106–114 (2001)

    Article  Google Scholar 

  52. V.V. Sobolev, J.M. Guilemany, J.R. Miguel, J.A. Calero, Influence of thermal processes on coating formation during high velocity oxy-fuel (HVOF) spraying of WC-Ni powder particles. Surf. Coat. Technol. 82, 121–129 (1996)

    Article  Google Scholar 

  53. L. Zhao, M. Maurer, F. Fischer, R. Dicks, E. Lugscheider, Influence of spray parameters on the particle in-flight properties and the properties of HVOF coating of WC-CoCr. Wear 257, 41–46 (2004)

    Article  Google Scholar 

  54. I. Fagoaga, J.L. Vivienta, P. Gavin, J.M. Bronte, J. Garcia, J.A. Tagle, Multilayer coatings by continuous detonation system spray technique. Thin Solid Films 317, 259–265 (1998)

    Article  Google Scholar 

  55. C. David, K. Anthymidis, P. Agrianidis, D. Tsipas, Determination of the fatigue resistance of HVOF thermal spray WC-CoCr coatings by means of impact testing. J. Test. Eval. 35, 630–633 (2007)

    Google Scholar 

  56. J. Wilden, M. Wank, H.D. Steffens, M. Brune, in New thermal barrier coating system for high temperature applications, proceedings of the 15th International Thermal Spray Conference, vol. 2, pp. 1669–1673 (1998)

    Google Scholar 

  57. G. Pepe, L. Looney, M.S.J. Hashmi, Predicting the wear resistance of WC-Co coatings using neural networks. Int. J. Model. Simul. 19, 410–417 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Sami Yilbas .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Yilbas, B.S., Al-Zaharnah, I., Sahin, A. (2014). Introduction. In: Flexural Testing of Weld Site and HVOF Coating Characteristics. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54977-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54977-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54976-2

  • Online ISBN: 978-3-642-54977-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics