Skip to main content

Nutrition in Critical Illness

  • Chapter
  • First Online:
Core Knowledge in Critical Care Medicine

Abstract

Appropriate feeding has become an integral part of the management of critically ill patients [1–5]. Moreover, Wischmeyer has postulated a key role for nutrition in survival after critical illness that extends for months or even years [6]. Disease-related malnutrition in critically ill patients is associated with increased morbidity and mortality [4, 7–12]. Compromised immune function, blunted respiratory drive and respiratory muscle weakness due to energy deficit may predispose the patients to further complications, the so-called second hit of nosocomial infections, and prolonged dependence on respiratory support with its inherent complications [13–16]. Associated with the inflammatory response triggered in critical illness, there is hypermetabolism due to metabolic stress and bed rest, all of which may promote protein catabolism [4, 17]. Thus, the critically ill may quickly develop malnutrition [12]. Malnutrition is common in acutely severely ill patients with a reported occurrence of 30–50 % [14, 18, 19]. In the critically ill, this overall weakness is termed ICU-acquired critical illness weakness and is the result of substantial loss of lean body mass, inadequate physical activity and marked catabolic metabolism [20–22]. Feeding patients has been shown to be beneficial, improving wound healing, mitigating the catabolic response, maintaining gastrointestinal barrier function preventing bacterial translocation, attenuating disease severity, modulating the immune system, enhancing insulin sensitivity and improving the overall outcome [2, 23]. However, feeding may result in harmful side effects such as gastric volume retention (gastroparesis) due to disturbed gut motility, bacterial colonization of the stomach and potentially an increased risk of aspiration and nosocomial pneumonia [24, 25]. Overfeeding can also result in significant metabolic stress aggravating the metabolic response to stress [26, 27] and is associated with harmful effects such as disturbed glycaemic control, deranged liver function, increased infections and even poor outcomes [28–31]. Furthermore, some authors argue that enteral feeding is contraindicated in unstable patients in shock requiring vasoactive medications [32, 33] as pyloric dysfunction is common in cardiogenic shock [34] and often combined with intestinal atony [35]. As such, after cardiac surgery, acute mesenteric ischaemia resulting from hypoperfusion – often related to hypotension – is seen in 0.5 % [36] to 1.4 % [37] of patients and associated with substantial mortality rates ranging between 11 and 27 % [36, 37]. Enteral feeding is shown to enhance the local mesenteric oxygen demand at the expense of vital organs [35]. Publications have suggested that enteral feeding may be generally deleterious in the critically ill unstable patient resulting in disturbed gastrointestinal motility, poor glycaemic control and worsened clinical outcome [26, 29, 38]. However, other studies show that enteral feeding may be beneficial even in haemodynamically compromised critically ill patients if applied with caution [39–43], and malnutrition is found to be associated with reduced LV systolic function, lower contractility and compliance [44]. There are ongoing controversies as to the amount of enteral feed and which formulation should be offered [4–6, 28]. The timing is not conclusively answered yet, and the role of parenteral nutrition, particularly in the case of compromised enteral function, is not determined [3, 12, 45, 46] though recent evidence has helped to clarify some of these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreymann KG, Berger MW, Deutz NE. ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25:210–33.

    CAS  PubMed  Google Scholar 

  2. McClave SA, Martindale RG, Vanek VW. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for parenteral and enteral nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009;33:277–316.

    PubMed  Google Scholar 

  3. Singer P, Berger MW, Van den Berghe G. ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr. 2009;28:387–400.

    PubMed  Google Scholar 

  4. Alberda C, Gramlich L, Jones N. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med. 2009;35:1728–37.

    PubMed  Google Scholar 

  5. Wischmeyer PE, Heyland DK. The future of critical care nutrition therapy. Crit Care Clin. 2010;26:433–41.

    PubMed  Google Scholar 

  6. Wischmeyer PE. The evolution of nutrition in critical care: how much, how soon? Crit Care. 2013;17(suppl1):S7.

    PubMed  PubMed Central  Google Scholar 

  7. Stratton RJ, Green CJ, Elia M. Disease-related malnutrition: an evidence-based approach to treatment. Oxon: CAB International; 2003. p. 3.

    Google Scholar 

  8. Correia MI, Waitzberg DL. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr. 2003;22:235–9.

    PubMed  Google Scholar 

  9. Lim SL, Ong KC, Chan YH. Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin Nutr. 2012;31:345–50.

    PubMed  Google Scholar 

  10. Giner M, Laviano A, Meguid MM. In 1995 a correlation between malnutrition and poor outcomes in critically ill patients still exists. Nutrition. 1996;12:23–9.

    CAS  PubMed  Google Scholar 

  11. Petros S, Engelmann L. Enteral nutrition delivery and energy expenditure in medical intensive care patients. Clin Nutr. 2006;25:51–9.

    PubMed  Google Scholar 

  12. Villet S, Chiolero RL, Bollmann MD. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24:502–9.

    PubMed  Google Scholar 

  13. Chandra R. Nutrition, immunity and infection: present knowledge and future direction. Lancet. 1983;1:688–91.

    CAS  PubMed  Google Scholar 

  14. Norman K, Pichard C, Lochs H. Prognostic impact of disease-related malnutrition. Clin Nutr. 2008;27:5–15.

    PubMed  Google Scholar 

  15. Chandra RA. 1990 McCollum Award lecture. Nutrition and immunity: lessons from the past and new insights into the future. Am J Clin Nutr. 1991;53:1087–101.

    CAS  PubMed  Google Scholar 

  16. Rubinson L, Diette GB, Song X. Low caloric intake is associated with nosocomial bloodstream infections in patients in the medical intensive care unit. Crit Care Med. 2004;32:350–7.

    PubMed  Google Scholar 

  17. Thibault R, Chikhi M, Clerc A. Assessment of food intake in hospitalized patients: a 10-year comparative study of a prospective hospital survey. Clin Nutr. 2011;30:289–96.

    PubMed  Google Scholar 

  18. Baccaro F, Moreno JB, Borlenghi C. Subjective global assessment in the clinical setting. JPEN J Parenter Enteral Nutr. 2007;31:406–9.

    PubMed  Google Scholar 

  19. Singh H, Watt K, Veitch R. Malnutrition is prevalent in hospitalized medical patients: are housestaff identifying the malnourished patient? Nutrition. 2006;22:350–4.

    PubMed  Google Scholar 

  20. Griffiths RD, Hall JB. Intensive care unit acquired weakness (review). Crit Care Med. 2010;38:779–87.

    PubMed  Google Scholar 

  21. Kaplan V, Clermont G, Griffin MF. Pneumonia: still the old man’s friend? Arch Intern Med. 2003;163:317–23.

    PubMed  Google Scholar 

  22. Herridge MS, Cheung AM, Tansey CM. One-year outcomes in survivors of acute respiratory distress syndrome. N Engl J Med. 2003;348:683–93.

    PubMed  Google Scholar 

  23. Heyland DK. Nutritional support in the critically ill patient: a critical review of the evidence. Crit Care Clin. 1998;14:423–40.

    CAS  PubMed  Google Scholar 

  24. Heyland DK, Cook DJ, Schoenfeld PS. The effect of acidified enteral feeds on gastric colonization in the critically ill patient: results of a multicenter randomized trial. Crit Care Med. 1999;27:2399–406.

    CAS  PubMed  Google Scholar 

  25. Mentec H, Dupont H, Bocchetti M. Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications. Crit Care Med. 2001;29:1955–61.

    CAS  PubMed  Google Scholar 

  26. Krishnan JA, Parce PB, Martinez S. Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes. Chest. 2003;124:297–305.

    PubMed  Google Scholar 

  27. Loh N-HW, Griffiths RD. The curse of overfeeding and the blight of underfeeding. [Buchverf.]. In: Vincent J-L, editor. Yearbook of intensive care and emergency medicine. Berlin/Heidelberg/New York: Springer; 2009. p. 681.

    Google Scholar 

  28. Berger MM, Pichard C. Best timing for energy provision during critical illness. Crit Care. 2012;16:215.

    PubMed  PubMed Central  Google Scholar 

  29. Dissanaike S, Shelton M, Warner K. The risk of bloodstream infections is associated with increased parenteral caloric intake in patients receiving parenteral nutrition. Crit Care. 2007;11:R114.

    PubMed  PubMed Central  Google Scholar 

  30. Ahrens CL, Barletta JF, Kanji S. Effect of low-calorie parenteral nutrition on the incidence and severity of hyperglycemia in surgical patients: a randomized, controlled trial. Crit Care Med. 2005;33:2507–12.

    CAS  PubMed  Google Scholar 

  31. Grau T, Bonet A, Rubio M. Liver dysfunction associated with artificial nutrition in critically ill patients. Crit Care. 2007;11:R10.

    PubMed  PubMed Central  Google Scholar 

  32. Dellinger RP, Carlet JM, Masur H, Surviving Sepsis Campaign Management Guidelines Committee. Surviving Sepsis campaign guidelines for the management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–73.

    PubMed  Google Scholar 

  33. force, ASPEN Board of directors and the clinical guidelines task. Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. JPEN J Parenter Enteral Nutr. 2002;26 Suppl 1:1SA–38.

    Google Scholar 

  34. Goldhill DR, Whelpton R, Winyard JA. Gastric emptying in patients the day after cardiac surgery. Anaesthesia. 1995;50:122–5.

    CAS  PubMed  Google Scholar 

  35. Berger MM, Chiolero RL. Enteral feeding during circulatory failure: myths and reality. [Buchverf.]. In: Vincent J-L, editor. Yearbook of intensive care and emergency medicine. Berlin/Heidelberg/New York: Springer; 2009. p. 683.

    Google Scholar 

  36. Venkateswaran RV, Charman SC, Goddard M. Lethal mesenteric ischemia after cardiopulmonary bypass: a common complication? Eur J Cardiothorac Surg. 2002;22:534–8.

    CAS  PubMed  Google Scholar 

  37. Lazar HL, Hudson H, McCann J. Gastrointestinal complications following cardiac surgery. Cardiovasc Surg. 1995;3:341–4.

    CAS  PubMed  Google Scholar 

  38. McCowen KC, Friel C, Sternberg J. Hypocaloric total parenteral nutrition: effectiveness in prevention of hypoglycemia and infectious complications – a randomized clinical trial. Crit Care Med. 2000;28:3606–11.

    CAS  PubMed  Google Scholar 

  39. Lasierra JLF, Perez-Vela J, Makikado LDU. Early enteral nutrition in patients with hemodynamic failure following cardiac surgery. JPEN J Parenter Enteral Nutr. 2013. doi:10.1177/0148607113504219.

    Google Scholar 

  40. Zaloga GP, Roberts PR, Marik PE. Feeding the hemodynamically unstable-patient: a critical evaluation of the evidence. Nutr Clin Pract. 2003;18:285–93.

    PubMed  Google Scholar 

  41. Doshi P, DiGiovine B. Effects of early enteral feeding on the outcome of critically ill mechanically ventilated medical patients on vasopressors. Chest. 2006;130(Suppl):101s.

    Google Scholar 

  42. Revelly JP, Tappy L, Berger MM. Metabolic, systemic and splanchnic hemodynamic responses to early enteral nutrition in postoperative patients treated for circulatory compromise. Intensive Care Med. 2001;27:540–7.

    CAS  PubMed  Google Scholar 

  43. Berger MM, Revelly JP, Cayeux MC. Enteral nutrition in critically ill patients with severe hemodynamic failure after cardiopulmonary bypass. Clin Nutr. 2005;24:124–32.

    PubMed  Google Scholar 

  44. Okoshi K, Matsubara LS, Okoshi MP. Food restriction induced myocardial dysfunction demonstrated by the combination of in vivo and in vitro studies. Nutr Res. 2002;22:1353–64.

    CAS  Google Scholar 

  45. Heyland DK, Dhaliwal R, Drover JW. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill patients. JPEN J Parenter Enteral Nutr. 2003;27:355–73.

    PubMed  Google Scholar 

  46. Schetz M, Casaer MP, Van den Berghe G. Does artificial nutrition improve outcome of critical illness? Crit Care. 2013;17:302.

    PubMed  PubMed Central  Google Scholar 

  47. Bonanno FG. Clinical pathology of shock syndromes. J Emerg Trauma Shock. 2011;4:233–43.

    PubMed  PubMed Central  Google Scholar 

  48. Brame AL, Singer M. Stressing the obvious? An allostatic look at critical illness. Crit Care Med. 2010;38(suppl):S600–7.

    PubMed  Google Scholar 

  49. Morley JE, Thomas DR, Wilson M-MG. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr. 2006;83:735–43.

    CAS  PubMed  Google Scholar 

  50. Kotler DP. Cachexia. Ann Intern Med. 2000;133:622–34.

    CAS  PubMed  Google Scholar 

  51. Rice TW, Mogan S, Hays MA. Randomized trial of initial trophic versus full-energy enteral nutrition in mechanically ventilated patients with acute respiratory failure. Crit Care Med. 2011;39:967–74.

    PubMed  PubMed Central  Google Scholar 

  52. Guttridge DC, Mayo MW, Madrid LV. NF-kB-induced loss of MyoD messenger RNA; possible role in muscle decay and cachexia. Science. 2000;289:2363–6.

    CAS  PubMed  Google Scholar 

  53. Wheeler MT, Snyder EC, Patterson MN. An E-box within the MHC IIB gene is bound by MyoD and is required for gene expression in fast muscle. Am J Physiol. 1999;276:C1069–76.

    CAS  PubMed  Google Scholar 

  54. Acharyya S, Ladner KJ, Nelsen LL. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest. 2004;114:370–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med. 1996;335:1897–905.

    CAS  PubMed  Google Scholar 

  56. Shintani F, Nakaki T, Kanba S. Role of interleukin-1 in stress responses. A putative neurotransmitter. Mol Neurobiol. 1995;10:47–71.

    CAS  PubMed  Google Scholar 

  57. Pende A, Musso NR, Vergassola C. Neuroendocrine effects of interferon alpha 2-a in healthy human subjects. J Biol Regul Homeost Agents. 1990;4:67–72.

    CAS  PubMed  Google Scholar 

  58. Reyden M, Arvidsson E, Blomqvist L. Targets for TNF-alpha-induced lipolysis in human adipocytes. Biochem Biophys Res Commun. 2004;318:168–75.

    Google Scholar 

  59. Grunfeld C, Feingold KR. Regulation of lipid metabolism by cytokines during host defense. Nutrition. 1996;12(suppl):S24–6.

    CAS  PubMed  Google Scholar 

  60. Wischmeyer PE. Glutamine: the first clinically relevant pharmacological regulator of heat shock protein expression? Curr Opin Clin Nutr Metab Care. 2006;9:201–6.

    CAS  PubMed  Google Scholar 

  61. Larsson J, Lennmarken C, Martensson J. Nitrogen requirements in severely injured patients. Br J Surg. 1990;77:413–6.

    CAS  PubMed  Google Scholar 

  62. Bartlett RH, Dechert RE, Mault JR. Measurement of metabolism in multiple organ failure. Surgery. 1982;92:771–9.

    CAS  PubMed  Google Scholar 

  63. Faisy C, Lerolle N, Dachraoui F. Impact of energy deficit calculated by a predictive method on outcome in medical patients requiring prolonged acute mechanical ventilation. Br J Nutr. 2009;101:1079–87.

    CAS  PubMed  Google Scholar 

  64. Barr J, Hecht M, Flavin KE. Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest. 2004;125:1446–57.

    PubMed  Google Scholar 

  65. Artinian V, Krayem H, DiGiovine B. Effects of early enteral feeding on the outcome of critically ill mechanically ventilated patients. Chest. 2006;129:960–7.

    PubMed  Google Scholar 

  66. Khalid I, Doshi P, DiGiovine B. Early enteral nutrition and outcomes of critically ill patients treated with vasopressors and mechanical ventilation. Am J Crit Care. 2010;19:261–8.

    PubMed  Google Scholar 

  67. Uehara M, Plank LD, Hill GL. Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med. 1999;27:1295–302.

    CAS  PubMed  Google Scholar 

  68. Arabi YM, Tamim HM, Dhar GS. Permissive underfeeding and intensive insulin therapy in critically ill patients: a randomized controlled trial. Am J Clin Nutr. 2011;93:569–77.

    CAS  PubMed  Google Scholar 

  69. Rice TW, Wheeler AP, Thompson BT, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trial Network. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307:569–77.

    Google Scholar 

  70. Singer P, Cohen J, Shapiro H. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37:601–9.

    PubMed  Google Scholar 

  71. Casear MP, Mesotten D, Hermans G. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–17.

    Google Scholar 

  72. Heyland DK, Wischmeyer PE. Does artificial nutrition improve outcome of critical illness? An alternative viewpoint! Crit Care. 2013;17:324.

    PubMed  Google Scholar 

  73. Heyland DK, Cahill N, Day AG. Optimal amount of calories for critically ill patients: depends on how you slice the cake! Crit Care Med. 2011;39:2619–26.

    PubMed  Google Scholar 

  74. Gramlich L, Kichian K, Pinilla J. Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of literature. Nutrition. 2004;20:843–8.

    PubMed  Google Scholar 

  75. Vanderheyden S, Casaer MP, Kestelooz K. Early versus late parenteral nutrition in ICU patients: cost analysis of the EPaNIC trial. Crit Care. 2012;16:R96.

    PubMed  PubMed Central  Google Scholar 

  76. Marik PE, Pinsky MR. Death by parenteral nutrition. Intensive Care Med. 2003;29:867–9.

    PubMed  Google Scholar 

  77. Tarling MM, Toner CC, Withington PS. A model of gastric emptying using paracetamol absorption in intensive care patients. Intensive Care Med. 1997;23:256–60.

    CAS  PubMed  Google Scholar 

  78. Kao CH, ChangLai SP, Chieng PU. Gastric emptying in head-injury patients. Am J Gastroenterol. 1998;93:1108–12.

    CAS  PubMed  Google Scholar 

  79. Ritz MA, Fraser R, Tam W. Impacts and patterns of disturbed gastrointestinal function in critically ill patients. Am J Gastroenterol. 2000;95:3044–52.

    CAS  PubMed  Google Scholar 

  80. Herbert MK. Impairment of intestinal motility in the critically ill patient. Clinical implications and contribution of drugs, and mediators. [Buchverf.]. In: Holzer MK, Roewer P, Herbert N, editors. Problems of the gastrointestinal tract in anesthesia, the perioperative period and intensive care. Berlin/Heidelberg/New York: Springer; 1999. p. 28–38.

    Google Scholar 

  81. Adam S, Batson S. A study of problems with delivery of enteral feed in critically ill patients in five ICUs in the UK. Intensive Care Med. 1997;23:261–6.

    CAS  PubMed  Google Scholar 

  82. Chapman M, Fraser R, Vozzo R. Antro-pyloro-duodenal motor responses to gastric and duodenal nutrient in critically ill patients. Gut. 2005;54:1384–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Raybould HE, Glatzle J, Robin C. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. Am J Physiol Gastrointest Liver Physiol. 2003;284:G367–72.

    CAS  PubMed  Google Scholar 

  84. Spallone V. Glycaemic control and gastric emptying. Diabetes Nutr Metab. 2004;17:47–55.

    CAS  PubMed  Google Scholar 

  85. Spallone und Deehan S, Dobb GJ. Metoclopramide-induced raised intracranial pressure after head injury. J Neurosurg Anesthesiol. 2002;14:157–60.

    Google Scholar 

  86. Frühwald S, Holzer P, Metzler H. Intestinal motility disturbances in intensive care patients pathogenesis and clinical impact. Intensive Care Med. 2007;33:36–44.

    PubMed  Google Scholar 

  87. Booth CM, Heyland DK, Paterson WG. Gastrointestinal promotility drugs in the critical care setting: a systematic review of the evidence. Crit Care Med. 2002;30:1429–35.

    CAS  PubMed  Google Scholar 

  88. Kearns PJ, Chin D, Mueller L. The incidence of ventilator-associated pneumonia and success in nutrient delivery with gastric versus small intestinal feeding: a randomized clinical trial. Crit Care Med. 2000;28:1742–6.

    CAS  PubMed  Google Scholar 

  89. Neumann DA, Delegge MH. Gastric versus small-bowel tube feeding in the intensive care unit: a prospective comparison of efficacy. Crit Care Med. 2002;30:1436–8.

    PubMed  Google Scholar 

  90. Taylor SJ, Fettes SB, Jewkes C. Prospective randomized controlled trial to determine the effect of early enhanced enteral nutrition on clinical outcome in mechanically ventilated patients suffering head injury. Crit Care Med. 1999;27:2525–31.

    CAS  PubMed  Google Scholar 

  91. Ziegler TR, Smith RJ, O’Dwyer ST. Increased intestinal permeability associated with infection in burn patients. Arch Surg. 1988;123:1313–9.

    CAS  PubMed  Google Scholar 

  92. Jabbar A, Chang WK, Dryden GW. Gut immunology and the differential response to feeding and starvation. Nutr Clin Pract. 2003;18:461–82.

    PubMed  Google Scholar 

  93. Windsor AC, Kanwar S, Li AG. Compared with parenteral nutrition, enteral feeding attenuates the acute phase response and improves disease severity in acute pancreatitis. Gut. 1998;42:431–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kudsk KA, Croce MA, Fabian TC. Enteral versus parenteral feeding: effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg. 1992;215:503–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Braunschweig CL, Levy P, Sheean PM. Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr. 2001;74:542.

    Google Scholar 

  96. Simpson F, Doig GS. Parenteral vs enteral nutrition in the critically ill patient: a meta-analysis of trials using the intention to treat principle. Intensive Care Med. 2005;31:12–23.

    PubMed  Google Scholar 

  97. Peter JV, Moran JL, Phillips-Highes JA. A metaanalysis of treatment outcomes of early enteral versus early parenteral nutrition in hospitalized patients. Crit Care Med. 2005;33:213–20.

    PubMed  Google Scholar 

  98. Foster GD, Knox LS, Dempsey DT. Caloric requirements in total parenteral nutrition. J Am Coll Nutr. 1987;6:231–53.

    CAS  PubMed  Google Scholar 

  99. Boitano M. Hypocaloric feeding of the critically ill. Nutr Clin Pract. 2006;21:617–22.

    PubMed  Google Scholar 

  100. Kreymann und Krishnan JA, Parce PB, Martinez A. Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes. Chest. 2003;124:297–305.

    Google Scholar 

  101. Harris JS, Benedict FG. A biometric study of basal metabolism in man. Washington: Carnegie Institute of Washington; 1919.

    Google Scholar 

  102. Elamin EM. Nutritional care of the obese intensive care unit patient. Curr Opin Crit Care. 2005;11:300–3.

    PubMed  Google Scholar 

  103. Hester DD, Lawson K. Suggested guidelines for use by dietitians in the interpretation of indirect calorimetry data. J Am Diet Assoc. 1989;89:100–1.

    CAS  PubMed  Google Scholar 

  104. French SN. Nutritional assessment via indirect calorimetry. Tech Notes. Medical Graphics Corporation. St. Paul, MN. 1987; 1–12.

    Google Scholar 

  105. McClave SA, Martindale RG, Vanek VW. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J Parenter Enteral Nutr. 2009;33:277–316.

    Google Scholar 

  106. Elamin EW, Camporesi E. Evidenced – based nutritional support in the intensive care unit. Inter Anaesth Clin. 2009;47:212–138.

    Google Scholar 

  107. Miles JM. Energy expenditure in hospitalized patients: implications for nutritional support. Mayo Clin Proc. 2006;81:809–16.

    PubMed  Google Scholar 

  108. Harris A, Benedict FG. A biometric study of human basal metabolism. Proc Natl Acad Sci U S A. 1918;4:370–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Blackburn GL, Bistrian BR, Maini BS. Nutritional and metabolic assessment of the hospitalized patient. JPEN J Parenter Enteral Nutr. 1991;1:11–22.

    Google Scholar 

  110. Robinson RD, Lupkiewicz SM, Palenik L. Determination of ideal body weight for drug dosage calculations. Am J Hosp Pharm. 1983;40:1016–9.

    CAS  PubMed  Google Scholar 

  111. Baumgartner, TG. Parenteral macronutrition. [Buchverf.] Clinical guide to parenteral micronutrition. Baumgartner: Fujisawa; 1997. p. 41.

    Google Scholar 

  112. Krenitsky J. Adjusted body weight, pro: evidence to support the use of adjusted body weight in calculating calorie requirements. Nutr Clin Pract. 2005;20:468–73.

    PubMed  Google Scholar 

  113. Weijs PJM, Stapel SN, de Groot SDW. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr. 2012;36:60–8.

    CAS  PubMed  Google Scholar 

  114. Bozfakioglu S. Nutrition in patients with acute renal failure. Nephrol Dial Transplant. 2001;16 suppl 6:21–2.

    PubMed  Google Scholar 

  115. Cano N, Fiaccadori E, Tesinsky P. ESPEN guidelines on enteral nutrition: adult renal failure. Clin Nutr. 2006;25:295–310.

    CAS  PubMed  Google Scholar 

  116. Florez DA, Aranda-Michel J. Nutritional management of acute and chronic liver disease. Semin Gastrointest Dis. 2002;13:169–78.

    PubMed  Google Scholar 

  117. Schutz T, Bechstein WO, Neuhaus P. Clinical practice of nutrition in acute liver failure: a European survey. Clin Nutr. 2004;23:975–82.

    PubMed  Google Scholar 

  118. Henkel AS, Buchman AL. Nutritional support in patients with chronic liver disease. Nat Clin Pract Gastroenterol Hepatol. 2006;3:202–9.

    CAS  PubMed  Google Scholar 

  119. Drover JW, Dhaliwal R, Weitzel L. Perioperative use of arginine-supplemented diets: a systematic review of the evidence. J Am Coll Surg. 2011;212:385–99, e381.

    PubMed  Google Scholar 

  120. Heyland DK, Novak F, Drover JW. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA. 2001;286:944–53.

    CAS  PubMed  Google Scholar 

  121. Waitzberg DL, Saito H, Plank LD. Postsurgical infections are reduced with specialized nutrition support. World J Surg. 2006;30:1592–604.

    PubMed  Google Scholar 

  122. Bringham KL. Metabolites of arachidonic acid in experimental lung vascular injury. Fed Proc. 1985;44:43–5.

    Google Scholar 

  123. Henderson Jr WR. Lipid-derived and other chemical mediators of inflammation in the lung. J Allergy Clin Immunol. 1987;79:543–53.

    CAS  PubMed  Google Scholar 

  124. Mizock BA. Nutritional support in acute lung injury and acute respiratory distress syndrome. Nutr Clin Pract. 2001;16:319–28.

    Google Scholar 

  125. Mizock BA, DeMichele SJ. The acute respiratory distress syndrome: role of nutritional modulation of inflammation through dietary lipids. Nutr Clin Pract. 2004;19:563–74.

    PubMed  Google Scholar 

  126. Pontes-Arruda A. The use of special lipids in the treatment of inflammatory lung disease. Clin Nutr Insight. 2007;33:1–4.

    Google Scholar 

  127. Singer P, Theilla M, Fisher H. Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med. 2006;34:1033–8.

    CAS  PubMed  Google Scholar 

  128. Chuntrasakul C, Siltham S, Sarasombath S. Comparison of a immunonutrition formula enriched arginine, glutamine and omega-3 fatty acid with a currently high-enriched enteral nutrition for trauma patients. J Med Assoc Thai. 2003;86:552–61.

    PubMed  Google Scholar 

  129. Mendez C, Jurkovich GJ, Garcia I. Effects of an immune-enhancing diet in critically injured patients. J Trauma. 1997;42:933–40.

    CAS  PubMed  Google Scholar 

  130. Brown RO, Hunt H, Mowatt-Larssen CA. Comparison of specialized and standard enteral formulas in trauma patients. Pharmacotherapy. 1994;14:314–20.

    CAS  PubMed  Google Scholar 

  131. Berger MM, Spertini F, Shenkin A. Trace element supplementation modulates pulmonary infection rates after major burns: a double-blind, placebo-controlled trial. Am J Clin Nutr. 1998;68:365–71.

    CAS  PubMed  Google Scholar 

  132. Heyland DK, Dhaliwal R, Suchner U. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med. 2005;31:327–37.

    PubMed  Google Scholar 

  133. McClave SA, DeMeo MT, DeLegge MH. North American summit on aspiration in the critically ill patient: consensus statement. JPEN J Parenter Enteral Nutr. 2002;26(6 Suppl):S80–5.

    PubMed  Google Scholar 

  134. Drakulovic MB, Torres A, Bauer TT. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet. 1999;354:1851–8.

    CAS  PubMed  Google Scholar 

  135. Lien HC, Chang CS, Chen GH. Can percutaneous endoscopic jejunostomy prevent gastroesophageal reflux in patients with preexisting esophagitis? Am J Gastroenterol. 2000;95:3439–43.

    CAS  PubMed  Google Scholar 

  136. Heyland DK, Drover JW, MacDonald S. Effect of postpyloric feeding on gastroesophageal regurgitation and pulmonary microaspiration: results of a randomized controlled trial. Crit Care Med. 2001;29:1495–501.

    CAS  PubMed  Google Scholar 

  137. Raper S, Maynard N. Feeding the critically ill. Br J Nurs. 1992;1:273–80.

    CAS  PubMed  Google Scholar 

  138. Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med. 2001;29:2264–70.

    CAS  PubMed  Google Scholar 

  139. Association, American Dietetic. American Dietetic Association Evidence Analysis Library. Update 1 Apr 2011 [Online]. [Zitat vom: 25. 11 2013.]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krüger, W., Ludman, A.J. (2014). Nutrition in Critical Illness. In: Core Knowledge in Critical Care Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54971-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54971-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54970-0

  • Online ISBN: 978-3-642-54971-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics