Skip to main content

Sepsis

  • Chapter
  • First Online:
Core Knowledge in Critical Care Medicine

Abstract

Sepsis is defined as a systemic illness caused by microbial invasion of normally sterile parts of the body [1]. The original (traditional) definition consists of two components:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lever I, Mackenzie I. Sepsis: definition, epidemiology, and diagnosis. BMJ. 2007;335:879–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest. 1992;101:1481–3.

    CAS  PubMed  Google Scholar 

  3. Levy MM, Fink MP, Marshall JC. SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–6.

    PubMed  Google Scholar 

  4. Conference, American College of Chest Physicians/Society of Critical Care Medicine. American College of Chest Physicians/Society of Critical Care Medicine Consensus. Definitions for sepsis and organ failure and guidelines for the use of innovative therapy. Crit Care Med. 1992;20:864–74.

    Google Scholar 

  5. Dellinger RP, Levy MM, Carlet JM. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34:17–60.

    PubMed  PubMed Central  Google Scholar 

  6. Nguyen HB, Rivers EP, Abrahamian FM. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Ann Emerg Med. 2006;48:28–54.

    PubMed  Google Scholar 

  7. Han Y, Carcillo J, Dragotta M. Early reversal of pediatric- neonatal septic shock by community physicians is associated with improved outcome. Pediatrics. 2003;112:793–9.

    PubMed  Google Scholar 

  8. Rippe JM, Irwin RS, Cerra FB. Irwin and Rippe’s intensive care medicine. Philadelphia: Lippincott-Raven; 1999. ISBN 0-7817-1425-7.

    Google Scholar 

  9. Marino PL. The ICU book. Baltimore: Williams and Wilkins; 1998. ISBN 0-683-05565-8.

    Google Scholar 

  10. Ten VS, Pinsky DJ. Endothelial response to hypoxia: physiologic adoption or pathologic dysfunction. Curr Opin Crit Care. 2002;8:242–50.

    PubMed  Google Scholar 

  11. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003;101:3765–77.

    CAS  PubMed  Google Scholar 

  12. Stearns-Kurosawa DJ, Osuchowski MF, Valentine C. The pathogenesis of sepsis. Annu Rev Pathol. 2011;6:19–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol. 2008;181:3733–9.

    CAS  PubMed  Google Scholar 

  14. Majno G. Chronic inflammation: links with angiogenesis and wound healing. Am J Pathol. 1998;153:1035–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Biedermann BC. Vascular endothelium: checkpoint for inflammation and immunity. News Physiol Sci. 2001;16:84–8.

    CAS  PubMed  Google Scholar 

  16. Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol. 2005;77:487–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roberstson CM, Coppersmith CM. The systemic inflammatory response syndrome. Microbes Infect. 2006;8:1382–9.

    Google Scholar 

  18. Broecher AC, Toft P. Pathophysiology of the systemic inflammatory response after major accidental trauma. Scan J Trauma Resusc Emerg Med. 2009;17:43–52.

    Google Scholar 

  19. Brame AL, Singer M. Stressing the obvious? An allostatic look at critical illness. Crit Care Med. 2010;38(Suppl):S 600–7.

    Google Scholar 

  20. Singer M. Systemic interactions. [Buchverf] Novartis foundation symposium 280. Sepsis – new insights, new therapies. Chichester: Wiley/Novartis; 2007. p. 252–65.

    Google Scholar 

  21. Zanotti- Cavazzoni SL, Dellinger RP. Hemodynamic optimisation of sepsis-induced tissue hypoperfusion. Crit Care. 2006;10 Suppl 3:S2.

    PubMed  PubMed Central  Google Scholar 

  22. Hunter JD, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104:3–11.

    CAS  PubMed  Google Scholar 

  23. Landesberg G, Gilon D, Meroz Y. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J. 2012;33:895–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Merx MW, Weber C. Sepsis and the heart. Circulation. 2007;116:793–802.

    CAS  PubMed  Google Scholar 

  25. Poelaert J, Declerck C, Vogelaers D. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med. 1997;23:553–60.

    CAS  PubMed  Google Scholar 

  26. Dellinger RP. Cardiovascular management of septic shock. Crit Care Med. 2003;31:946–55.

    PubMed  Google Scholar 

  27. De Backer D, Creteur J, Preiser JC. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.

    PubMed  Google Scholar 

  28. Spronk PE, Zandstra DF, Ince C. Bench-to-bedside review: sepsis is a disease of microcirculation. Crit Care. 2004;8:462–8.

    PubMed  PubMed Central  Google Scholar 

  29. Vincent JL. Dear SIRS, I’m sorry to say that we don’t like you. Crit Care Med. 1997;25:372–4.

    CAS  PubMed  Google Scholar 

  30. Dellinger RP, Levy MM, Rhodes A. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.

    PubMed  Google Scholar 

  31. Nduka OO, Parrillo JE. The pathophysiology of septic shock. Crit Care Clin. 2009;25:677–702.

    CAS  PubMed  Google Scholar 

  32. Annane D, Bellissant E, Cavaillon J-M. Septic shock. Lancet. 2005;365:63–78.

    CAS  PubMed  Google Scholar 

  33. Medicine, American College of Chest Physicians/Society of Critical Care. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–74.

    Google Scholar 

  34. Angus DC, Linde-Zwirble WT, Lidicker J. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.

    CAS  PubMed  Google Scholar 

  35. Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis. Crit Care Med. 2006;34:15–21.

    PubMed  Google Scholar 

  36. Martin GS, Mannino DM, Eaton S. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–54.

    PubMed  Google Scholar 

  37. Dombrovsky VY, Martin AA, Sunderram J. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35:1244–50.

    Google Scholar 

  38. Padkin A, Godfrad C, Brady AR. Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern Ireland. Crit Care Med. 2003;31:2332–8.

    PubMed  Google Scholar 

  39. Rangel-Fausto MS, Pittet D, Hwang T. The dynamic of disease progression in sepsis: Markov modeling describing the natural history and the likely impact of effective antisepsis agents. Clin Infect Dis. 1998;27:185–90.

    Google Scholar 

  40. Linde-Zwirble WT, Angus DC. Severe sepsis epidemiology: sampling, selection, and society. Crit Care. 2004;32:222–6.

    Google Scholar 

  41. Friedman G, Silva E, Vincent JL. Has the mortality of septic shock changed with time. Crit Care Med. 1998;26:2078–86.

    CAS  PubMed  Google Scholar 

  42. Vincent JL, Sakr Y, Spring CL, Sepsis Occurrence in Acutely III Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–53.

    PubMed  Google Scholar 

  43. Martin GS, Brunckhorst FM, Reinhart K. The international PROGRESS registry of patients with severe sepsis: drotrecogin alfa (activated) use and patient outcomes. Crit Care. 2009;13:R103.

    PubMed  PubMed Central  Google Scholar 

  44. Annane D, Bellissant E, Bollaert PE. Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. JAMA. 2009;301:2362–75.

    CAS  PubMed  Google Scholar 

  45. van Ruler O, Schultz MJ, Reitsma JB. Has mortality from sepsis improved and what to expect from new treatment modalities: review of current insights. Surg Infect (Larchmt). 2009;10:339–48.

    Google Scholar 

  46. Levy MM, Artigas A, Phillips GS. Outcomes of the surviving sepsis campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis. 2012;12:919–24.

    PubMed  Google Scholar 

  47. Lundberg JS, Perl TM, Wiblin T. Septic shock: an analysis of outcomes for patients with onset on hospital wards versus intensive care units. Crit Care Med. 1998;26:1020–4.

    CAS  PubMed  Google Scholar 

  48. Nguyen HB, Rivers EP, Havstad S. Critical care in the emergency department: a physiologic assessment and outcome evaluation. Acad Emerg Med. 2000;7:1354–61.

    CAS  PubMed  Google Scholar 

  49. Teres D, Rapoport J, Lemeshow S. Effects of severity of illness on resource use by survivors and nonsurvivors of severe sepsis at intensive care unit admission. Crit Care Med. 2002;30:2413–9.

    PubMed  Google Scholar 

  50. Heyland DK, Hopman W, Coo H. Long-term health-related quality of live in survivors of sepsis. Short form 36: a valid and reliable measure of health-related quality of life. Crit Care Med. 2000;28:3599–605.

    CAS  PubMed  Google Scholar 

  51. Annane D, Sebille C, Carpentier C. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–71.

    CAS  PubMed  Google Scholar 

  52. Annane D, Aegerter P, Jars-Guincestre MC. Current epidemiology of septic shock: the CUB-Rea Network. Am J Respir Crit Care Med. 2003;168:165–72.

    PubMed  Google Scholar 

  53. Alberti C, Brun-Buisson C, Burchardi H. Epidemiology of sepsis and infection in ICU patients from an international multicenter cohort study. Intensive Care Med. 2002;28:108–21.

    PubMed  Google Scholar 

  54. Jr Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    CAS  PubMed  Google Scholar 

  55. Zhao B, Bowden RA, Stavchansky SA. Human endothelial cell response to gram –negative lipopolysaccharide assessed with cDNA microarrays. Am J Physiol Cell Physiol. 2001;281:C1587–95.

    CAS  PubMed  Google Scholar 

  56. Parillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993;328:1471–7.

    Google Scholar 

  57. Nathan CF. Secretory macrophages. J Clin Invest. 1987;79:319–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Licastro F, Candore G, Lio D. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun Ageing. 2005;2:8.

    PubMed  PubMed Central  Google Scholar 

  59. Huet O, Harrois A, Duranteau J. Oxidative stress and endothelial dysfunction during sepsis. [Buchverf]. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. Berlin/Heidelberg/New York: Springer; 2009. p. 59.

    Google Scholar 

  60. Hack CE, Zeerleder S. He endothelium in sepsis: source of and a target for inflammation. Crit Care Med. 2001;29(7 Suppl):S21–7.

    CAS  PubMed  Google Scholar 

  61. Volk T, Kox WJ. Endothelium function in sepsis. Inflamm Res. 2000;49:185–98.

    CAS  PubMed  Google Scholar 

  62. Faure E, Thomas L, Xu H. Bacterial lipopolysaccharide and IFN-gamma induce toll-like receptor 2 and toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol. 2001;166:2018–24.

    CAS  PubMed  Google Scholar 

  63. Henneke P, Golenbock DT. Innate immune recognition of lipopolysaccharide by endothelial cells. Crit Care Med. 2002;30:S207–13.

    CAS  PubMed  Google Scholar 

  64. Medzitov R, Janewy C. Innate immunity. N Engl J Med. 2000;343:338–44.

    Google Scholar 

  65. Opal SM, Hiber CE. Bench-to-bedside review: toll-like receptors and their role in septic shock. Crit Care. 2002;6:125–36.

    PubMed  PubMed Central  Google Scholar 

  66. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–45.

    CAS  PubMed  Google Scholar 

  67. Bone RC. The pathogenesis of sepsis. Ann Intern Med. 1991;307:1225–30.

    Google Scholar 

  68. Neviere R. The pathophysiology of sepsis. [Online] Up to date, 16 Mai 2012. [Zitat vom: 30 June 2013]. http://www.uptodate.com/contents/pathophysiology-of-sepsis.

  69. Alcaide P, Auerbach S, Luscinskas FW. Neutrophil recruitment under shear flow: it’s all about endothelial cell rings and gaps. Microcirculation. 2009;16:43–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Movat HZ, Cybulsky MI, Colditz IG. Acute inflammation in gram-negative infection: endotoxin, interleukin 1, tumor necrosis factor, and neutrophils. Fed Proc. 1987;46:97.

    CAS  PubMed  Google Scholar 

  71. Aird WC. Endothelium in health and disease. Pharmacol Rep. 2008;60:139–43.

    PubMed  Google Scholar 

  72. Santiago-Delpin EA. The endothelium and early immune activation: new perspectives and interaction. Transplant Proc. 2004;36:1709–13.

    CAS  PubMed  Google Scholar 

  73. Shapiro N, Schuetz P, Yano K. The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit Care. 2010;14:R182.

    PubMed  PubMed Central  Google Scholar 

  74. Cines DB, Pollak ES, Buck CA. Endothelial cells in physiology and in pathophysiology of vascular disorders. Blood. 1998;91:3527–61.

    CAS  PubMed  Google Scholar 

  75. Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93:105–13.

    CAS  PubMed  Google Scholar 

  76. Sandoo A, van Zanten JJCS, Metsios GS. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4:302–12.

    PubMed  PubMed Central  Google Scholar 

  77. Gross PL, Aird WC. The endothelium and thrombosis. Semin Thromb Hemost. 2000;26:463–78.

    CAS  PubMed  Google Scholar 

  78. Cerwinka WH, Cooper D, Krieglstein CF. Superoxide mediates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol. 2003;284:H535–41.

    CAS  PubMed  Google Scholar 

  79. Chung HY, Yokozawa T, Kim MS. The mechanism of nitric oxide and/or superoxide cytotoxicity in endothelial cells. Exp Toxicol Pathol. 2000;52:227–33.

    CAS  PubMed  Google Scholar 

  80. Ince C. Microcirculation in distress: a new resuscitation end point. Crit Care Med. 2004;32:1963–4.

    PubMed  Google Scholar 

  81. Li JM, Shah AM. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1014–30.

    CAS  PubMed  Google Scholar 

  82. Cariou A, Chiche JD, Charpentier J. The era of genomics: impact on sepsis clinical trial design. Crit Care Med. 2002;30:S341–8.

    PubMed  Google Scholar 

  83. Kumar A, Short J, Parrillon JE. Genetic factors in septic shock. JAMA. 1999;282:579–81.

    CAS  PubMed  Google Scholar 

  84. Arbour NC, Lorenz E, Schutte BC. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000;25:187–91.

    CAS  PubMed  Google Scholar 

  85. Vallet B, Wiel E. Endothelial cell dysfunction and coagulation. Crit Care Med. 2002;29:S36–41.

    Google Scholar 

  86. Schuetz P, Jones AE, Aird WC. Endothelial cell activation in emergency department patients with sepsis-related and non-sepsis-related hypotension. Shock. 2011;36:104–8.

    PubMed  PubMed Central  Google Scholar 

  87. Aired WC. Vascular bed-specific hemostasis: role of endothelium in sepsis pathogenesis. Arch Immunol Ther Exp. 2000;48:439–42.

    Google Scholar 

  88. Pernerstorfer T, Hollenstein U, Hansen JB. Lepirudin blunts endotoxin-induced coagulation activation. Blood. 2000;95:1729–34.

    CAS  PubMed  Google Scholar 

  89. Carson SD, Johnson DR. Consecutive enzyme cascades: complement activation at the cell surface triggers increased tissue factor activity. Blood. 1990;76:361–7.

    CAS  PubMed  Google Scholar 

  90. Jansen PM, Eisele B, de Jong IW. Effect of C1 inhibitor on inflammatory and physiologic response patterns in primates suffering from lethal septic shock. J Immunol. 1998;160:475c–84.

    Google Scholar 

  91. Munford RS, Pugin J. Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am J Respir Crit Care Med. 2001;163:316–21.

    CAS  PubMed  Google Scholar 

  92. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune- mediated inflammation. N Engl J Med. 1995;332:1351–62.

    CAS  PubMed  Google Scholar 

  93. Romanovsky AA, Szekely M. Fever and hypothermia: two adoptive thermoregulatory responses to systemic inflammation. Med Hypotheses. 1998;50:219–26.

    CAS  PubMed  Google Scholar 

  94. Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–9.

    CAS  PubMed  Google Scholar 

  95. Engelmann L, Petros S, Gundelach K. Die Bedeutung des “second hit” für den Sepsisverlauf. Intensiv Med. 2006;43:189–201.

    Google Scholar 

  96. Bochkov VN, Kadl A, Huber J. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature. 2002;419:77–81.

    CAS  PubMed  Google Scholar 

  97. Ayala A, Chung CS, Grutkoski PS. Mechanisms of immune resolution. Crit Care Med. 2003;31(Suppl):558–71.

    Google Scholar 

  98. Pugin J. Recognition of bacteria and bacterial products by host immune cells in sepsis. [Buchverf.]. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer; 1996. p. 11.

    Google Scholar 

  99. Adib-Conquy M, Cavaillon JM. Compensatory anti-inflammatory response syndrome. Thromb Haemost. 2009;101:36.

    CAS  PubMed  Google Scholar 

  100. Bone RC. Immunologic dissonance: a continuing evolution in our understanding of systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med. 1996;125:680–7.

    CAS  PubMed  Google Scholar 

  101. Pinsky MR, Matuschak GM. Multiple systems organ failure: failure of host defense homeostasis. Crit Care Clin. 1989;5:199.

    CAS  PubMed  Google Scholar 

  102. Ghosh S, Latimer RD, Gray BM. Endotoxin-induced organ injury. Crit Care Med. 1993;21(Suppl):S21.

    Google Scholar 

  103. Matsuda N, Hattory Y. Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J Pharmacol Sci. 2006;101:189–98.

    CAS  PubMed  Google Scholar 

  104. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348:138–50.

    CAS  PubMed  Google Scholar 

  105. Bistrian B. Systemic response to inflammation. Nutr Rev. 2007;65:S170–2.

    PubMed  Google Scholar 

  106. Tracey KJ, Beutler B, Lowry SF. Shock and tissue injury induced by recombinant human cachetin. Science. 1986;234:470.

    CAS  PubMed  Google Scholar 

  107. Cavaillon JM, Adib-Conquy M, Fitting C. Cytokine cascade in sepsis. Scand J Infect Dis. 2003;35:535–44.

    CAS  PubMed  Google Scholar 

  108. Cavaillon JM, Mu-oz C, Fitting C. Circulating cytokines: the tip of the iceberg? Cric Shock. 1992;38:145–52.

    CAS  Google Scholar 

  109. Singh S, Evans TW. Organ dysfunction in sepsis. [Buchverf.]. In: Pinsky MR, Brochard L, Mancebo J, editors. Applied physiology in intensive care medicine. Berlin/Heidelberg: Springer; 2006. p. 345–56.

    Google Scholar 

  110. Godin PJ, Buchman TG. Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med. 1996;24:1107–16.

    CAS  PubMed  Google Scholar 

  111. Chrousos GP. The stress response and immune function: clinical implications. The 1999 Novera H Spector Lecture. Ann N Y Acad Sci. 2000;917:38–67.

    CAS  PubMed  Google Scholar 

  112. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–91.

    CAS  PubMed  Google Scholar 

  113. Neviere R, Mathieu D, Chagnon JL. Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med. 1996;153:191.

    CAS  PubMed  Google Scholar 

  114. Fukushima R, Alexander JW, Gianotti L. Isolated pulmonary infection acts as a source of systemic tumor necrosis factor. Crit Care Med. 1994;22:114–20.

    CAS  PubMed  Google Scholar 

  115. Bone RC. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med. 1996;24:163–72.

    CAS  PubMed  Google Scholar 

  116. Bone RC, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process. Chest. 1997;112:235–43.

    CAS  PubMed  Google Scholar 

  117. van der Poll T, van Deventer SJ. Cytokines and anticytokines in the pathogenesis of sepsis. Infect Dis Clin North Am. 1999;13:413–26.

    PubMed  Google Scholar 

  118. Pinsky MR. Immune balance in critically ill patients. Arch Immunol Ther Exp. 2000;48:438–42.

    Google Scholar 

  119. Ward NS, Casserly B, Ayaly A. The compensatory anti-inflammatory response syndrome (CARS) in critilly ill patients. Clin Chest Med. 2008;29:617–viii.

    PubMed  PubMed Central  Google Scholar 

  120. Volk HD, Reinke P, Krausch D. Monocyte deactivation-rationale for a new therapeutic strategy in sepsis. Intensive Care Med. 1996;22 Suppl 4:S474–81.

    PubMed  Google Scholar 

  121. Stephan F, Yang K, Tankovic J. Impairment of polymorphonuclear neutrophil functions precedes nosocomial infections in critically ill patients. Crit Care Med. 2002;30:315–22.

    PubMed  Google Scholar 

  122. Cavaillon JM, Adrie C, Fitting C. Reprogramming of circulatory cells in sepsis and SIRS. J Endotoxin Res. 2005;11:311–20.

    CAS  PubMed  Google Scholar 

  123. McCall CE, Yoza BK. Gene silencing in severe systemic inflammation. Am J Resipr Crit Care Med. 2007;175:763–7.

    CAS  Google Scholar 

  124. Prass K, Meisel C, Hoflich C. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198:725–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Olszewski MA, Falkowski NR, Surana R. Effect of laparotomy on clearance and cytokine induction in Staphylococcus aureus infected lungs. Am J Respir Crit Care Med. 2007;176:921–9.

    CAS  PubMed  Google Scholar 

  126. White JC, Nelson S, Winkelstein JA. Impairment of antibacterial defense mechanisms of the lung by extrapulmonary infection. J Infect Dis. 1986;153:202–8.

    CAS  PubMed  Google Scholar 

  127. Lyons A, Kelly JL, Rodrick ML. Major injury induces increased production of interleukin-10 by cells of the immune system with a negative impact on resistance to infection. Ann Surg. 1997;226:450–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hensler T, Heidecke CD, Hecker H. Increased susceptibility to postoperative sepsis in patients with impaired monocyte IL-12 production. J Immunol. 1998;161:2655–9.

    CAS  PubMed  Google Scholar 

  129. Spolarics Z, Siddiqi M, Siegel JH. Depressed interleukin-12-producing activity by monocytes correlates with adverse clinical course and a shift toward Th2-type lymphocyte pattern in severely injured male trauma patients. Crit Care Med. 2003;31:1722–9.

    CAS  PubMed  Google Scholar 

  130. Spengler RN, Allen RM, Remick DG. Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol. 1990;145:1430–4.

    CAS  PubMed  Google Scholar 

  131. Severn A, Rapson NT, Hunter CA. Regulation of tumor necrosis factor production by adrenaline and beta-adrenergic agonists. J Immunol. 1992;148:3441–5.

    CAS  PubMed  Google Scholar 

  132. Zinyama RB, Bancroft GJ, Sigola LB. Adrenaline suppression of the macrophage nitric oxide response to lipopolysaccharide is associated with differential regulation of tumor necrosis factor-alpha and interleukin-10. Immunology. 2001;104:439–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chrousos GP. The stress response and immune function: clinical implications. The 1999 Novera H Spector Lecture. Ann N Y Acad Sci. 2000;917:38–67.

    CAS  PubMed  Google Scholar 

  134. Prigent H, Maxime D, Annane D. Mechanisms of impaired adrenal function in sepsis and molecular actions of glucocorticoids. Crit Care. 2004;8:243–52.

    PubMed  PubMed Central  Google Scholar 

  135. Annane D, Sebille V, Troche G. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA. 2000;283:1038–45.

    CAS  PubMed  Google Scholar 

  136. Sharshar T, Gray F, de la Grandmaison LG. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet. 2003;362:1799–805.

    CAS  PubMed  Google Scholar 

  137. Landry DW, Levin HR, Gallant EM. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95:1122–5.

    CAS  PubMed  Google Scholar 

  138. Sharshare T, Blanchard A, Paillard M. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31:1752–8.

    Google Scholar 

  139. Riedemann NC, Guo R, Ward PA. Novel strategies for the treatment of sepsis. Nat Med. 2003;9:517–24.

    CAS  PubMed  Google Scholar 

  140. Thomas L. Germs. N Engl J Med. 1972;287:553–5.

    CAS  PubMed  Google Scholar 

  141. Bone RC, Balk RA, Cerra FB. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101:1644–55.

    CAS  PubMed  Google Scholar 

  142. Stone R. Search for sepsis drugs goes on despite past failures. Science. 1994;264:365–7.

    CAS  PubMed  Google Scholar 

  143. Warren HS. Strategies for the treatment of sepsis. N Engl J Med. 1997;336:952–3.

    CAS  PubMed  Google Scholar 

  144. Qureshi K, Rajah A. Septic shock: a review article. Br J Med Pract. 2008;1:7–12.

    Google Scholar 

  145. Fink MP, Heard SO. Laboratory models of sepsis and septic shock. J Surg Res. 1990;49:186–96.

    CAS  PubMed  Google Scholar 

  146. Deitch EA. Animal models of sepsis and shock: a review and lessons learned. Shock. 1998;9:1–11.

    CAS  PubMed  Google Scholar 

  147. Debts JMH, Kampmeijer R, van der Linden MPMH. Plasma tumor necrosis factor and mortality in critically ill septic patients. Crit Care Med. 1989;17:489–94.

    Google Scholar 

  148. Oberholzer A, Oberholzer C, Moldawer LL. Cytokine signaling–regulation of the immune response in normal and critically ill states. Crit Care Med. 2000;28(Suppl):N3–12.

    CAS  PubMed  Google Scholar 

  149. Pruitt JH, Welborn MB, Edwards PD. Increased soluble interleukin-1 type II receptor concentrations in postoperative patients and in patients with sepsis syndrome. Blood. 1996;87:3282–8.

    CAS  PubMed  Google Scholar 

  150. Hotchkiss RS, Swanson PE, Freeman BD. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med. 1999;27:1230–51.

    CAS  PubMed  Google Scholar 

  151. Weinberg JM, Venkatachalam MA. Guanine nucleotides and acute renal failure. J Clin Invest. 2001;108:1279–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Noble JS, MacKirdy FN, Donaldson SI. Renal and respiratory failure in Scottish ICUs. Anaesthesia. 2001;56:124–9.

    CAS  PubMed  Google Scholar 

  153. Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med. 1999;340:207–14.

    CAS  PubMed  Google Scholar 

  154. Zeni F, Freeman BF, Natanson C. Antiinflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med. 1997;25:1095–100.

    CAS  PubMed  Google Scholar 

  155. Singer M, De Santis V, Vitale D. Multiorgan failure is an adoptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004;364:545–8.

    PubMed  Google Scholar 

  156. Tsai AG, Kerger H, Intaglietta M. Oxygen distribution and consumption by the microcirculation and the determinants of tissue survival. [Buchverf]. In: Messmer WJ, Fink K, Sibbald MP, editors. Tissue oxygenation in acute medicine. Berlin/Heidelberg: Springer; 1998.

    Google Scholar 

  157. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9 Suppl 4:S13–29.

    PubMed  PubMed Central  Google Scholar 

  158. Trzeciak S, Cinel I, Dellinger RP. Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med. 2008;15:399–413.

    PubMed  PubMed Central  Google Scholar 

  159. Vincent J-L, De Backer D. Microvascular dysfunction as a cause of organ dysfunction in severe sepsis. Crit Care. 2005;9 Suppl 4:S9–12.

    PubMed  PubMed Central  Google Scholar 

  160. Walley KR. Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues: theory. J Appl Physiol. 1996;81:885–94.

    CAS  PubMed  Google Scholar 

  161. Goldman D, Bateman RM, Ellis CG. Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow. Am J Physiol Heart Circ Physiol. 2006;290:H2277–85.

    CAS  PubMed  Google Scholar 

  162. Eipel C, Bordel R, Nickels RM. Impact of leukocytes and platelets in mediating hepatocyte apoptosis in a rat model of systemic endotoxemia. Am J Physiol Gastrointest Liver Physiol. 2004;286:G769–76.

    CAS  PubMed  Google Scholar 

  163. Boeckstegers P, Weidenhofer S, Pilz G. Peripheral oxygen availability within skeletal muscle in sepsis and septic shock: comparison to limited infection and cardiogenic shock. Infection. 1991;19:317–23.

    Google Scholar 

  164. Sair M, Etherington PJ, Winlove CP. Tissue oxygenation and perfusion in human skeletal muscle in patients with systemic sepsis. Crit Care Med. 2001;29:1343–9.

    CAS  PubMed  Google Scholar 

  165. Nencioni A, Trzeciak S, Shapiro NI. The microcirculation as a diagnostic and therapeutic target in sepsis. Intern Emerg Med. 2009;4:413–8.

    PubMed  Google Scholar 

  166. Karimova A, Pinsky MR. The endothelial response to oxygen deprivation: biology and clinical implications. Intensive Care Med. 2001;27:19–31.

    CAS  PubMed  Google Scholar 

  167. Fink MP. Cytopathic hypoxia: Is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration. Crit Care Clin. 2002;18:165–75.

    CAS  PubMed  Google Scholar 

  168. Fink MP. Cytopathic hypoxia: mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17:219–37.

    CAS  PubMed  Google Scholar 

  169. Crouser ED, Julian MW, Blaho DV. Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med. 2002;30:276.

    CAS  PubMed  Google Scholar 

  170. Rosengarten B, Hecht M, Auch D. Microcirculatory dysfunction in the brain precedes changes in evoked potentials in endotoxin-induced sepsis syndrome in rats. Cerebrovasc Dis. 2007;23:140.

    CAS  PubMed  Google Scholar 

  171. Boulos M, Astiz ME, Barua RS. Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly (ADP-ribose) synthase. Crit Care Med. 2003;31:353–8.

    CAS  PubMed  Google Scholar 

  172. Brealey D, Brand M, Hargreaves I. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23.

    CAS  PubMed  Google Scholar 

  173. Ellis CG, Bateman RM, Sharpe MD. Effect of maldistribution of microvascular blood flow on capillary O 2 extraction in sepsis. Am J Physiol Heart Circ Physiol. 2002;282:156–64.

    Google Scholar 

  174. Parrillo JE. Cardiovascular dysfunction in septic shock: new insights into a deadly disease. Int J Cardiol. 1985;7:314–21.

    CAS  PubMed  Google Scholar 

  175. Sawyer DB, Loscalzo J. Myocardial hibernation: restorative or preterminal sleep? Circulation. 2002;105:1517–9.

    PubMed  Google Scholar 

  176. Khan AU, Delude RL, Han YY. Liposomal NAD(+) prevents diminished O(2) consumption by immunostimulated Caco-2 cells. Am J Physiol Lung Cell Mol Physiol. 2002;282:L1082–91.

    CAS  PubMed  Google Scholar 

  177. Sörensen TIA, Nielsen GG, Andersen PK. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med. 1988;318:727–32.

    PubMed  Google Scholar 

  178. Lin MT, Albertson TE. Genomic polymorphism in sepsis. Crit Care Med. 2004;32:569–79.

    CAS  PubMed  Google Scholar 

  179. Stuber F. Effects of genomic polymorphisms on the course of sepsis: is there a concept for gene therapy? J Am Soc Nephrol. 2001;12 Suppl 17:S60–4.

    CAS  PubMed  Google Scholar 

  180. Read RC, Camp NJ, di Giovine FS. An interleukin-1 genotype is associated with fatal outcome of meningococcal disease. J Infect Dis. 2000;182:1557–60.

    CAS  PubMed  Google Scholar 

  181. Eisen DP, Dean MM, Thomas P. Low mannose-binding lectin function is associated with sepsis in adult patients. FEMS Immunol Med Microbiol. 2006;48:274–82.

    CAS  PubMed  Google Scholar 

  182. Koike K, Moore FA, Moore EE. Endotoxin after gut ischemia/reperfusion causes irreversible lung injury. J Surg Res. 1992;52:556–62.

    Google Scholar 

  183. MacFie J, O’Boyle C, Mitchell CJ. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut. 1999;45:223–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Bastian L, Weimann A. Praktische Aspeckte der frühen enteralen Ernährung. Anaesthesiol Reanimat. 1999;24:95–100.

    CAS  Google Scholar 

  185. Carrico CJ, Meakins JL, Marshall JC. Multiple-organ-failure syndrome: the gastrointestinal tract–the motor of MOF. Arch Surg. 1986;121:197–201.

    Google Scholar 

  186. Fine J, Frank ED, Rutenberg SH. The bacterial factor in traumatic shock. N Engl J Med. 1959;260:214–20.

    CAS  PubMed  Google Scholar 

  187. Clark J, Coopersmith CM. Intestinal crosstalk – a new paradigm for understanding the gut as the “motor” of critical illness. Shock. 2007;28:384–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Lederer JA, Rodrick ML, Mannick JA. The effects of injury on the adaptive immune response. Shock. 1999;11:153–9.

    CAS  PubMed  Google Scholar 

  189. Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock. 2001;16:83–96.

    CAS  PubMed  Google Scholar 

  190. Meakins JL, Pietsch JB, Bubenick O. Delayed hypersensitivity: indicator of acquired failure of host defences in sepsis and trauma. Ann Surg. 1977;186:241–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. McCabe WR, Jackson GG. Gram-negative bacteremia. I: etiology and ecology. Ann Intern Med. 1962;110:847–53.

    Google Scholar 

  192. Brun-Bulsson C, Doyon F, Carlet J. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter, prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA. 1995;74:968–74.

    Google Scholar 

  193. Bruserud O, Nesthus I, Buhring HJ. Cytokine modulation of interleukin 1 and tumor necrosis factor-alpha secretion from acute myelogenous leukemia blast cells in vitro. Leuk Res. 1995;19:15–22.

    CAS  PubMed  Google Scholar 

  194. Singer M, Glynne P. Treating critical illness: the importance of first doing no harm. PLoS Med. 2005;2:e167.

    PubMed  PubMed Central  Google Scholar 

  195. Nathan C. Points of control in inflammation. Nature. 2002;420:846–52.

    CAS  PubMed  Google Scholar 

  196. Jarrar D, Chaudry IH, Wang P. Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches. Int J Mol Med. 1999;4:575–83.

    CAS  PubMed  Google Scholar 

  197. Marshall JC. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med. 2001;29:S99–106.

    CAS  PubMed  Google Scholar 

  198. Pathan CA, Hemingway CA, Alizadeh AA. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet. 2004;363:203–9.

    CAS  PubMed  Google Scholar 

  199. Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351:159–69.

    CAS  PubMed  Google Scholar 

  200. Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med. 1999;341:586–92.

    CAS  PubMed  Google Scholar 

  201. Bion J. Pathophysiology of acute respiratory distress syndrome and acute lung injury. [Buchverf.]. In: Shapiro MJ, Singer M, Suter PM, Webb AR, editors. Oxford textbook of critical care. Oxford: Oxford University Press; 1999. p. 923–6.

    Google Scholar 

  202. Bonanno FG. Shock- a reappraisal: the holistic approach. J Emerg Trauma Shock. 2012;5:167–77.

    PubMed  PubMed Central  Google Scholar 

  203. Holmes CL. Vasoactive drugs in the intensive care unit. Curr Opin Crit Care. 2005;11:413–7.

    PubMed  Google Scholar 

  204. Astiz ME, Rackow EC. Septic shock. Lancet. 1998;351:1501–5.

    CAS  PubMed  Google Scholar 

  205. Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care. 2005;9 Suppl 4:S20–6.

    PubMed  PubMed Central  Google Scholar 

  206. Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med. 1999;27:1369–77.

    CAS  PubMed  Google Scholar 

  207. Ruokonen E, Takala J, Kari A. Regional blood flow and oxygen transport in septic shock. Crit Care Med. 1993;21:1296–303.

    CAS  PubMed  Google Scholar 

  208. Ellis CG, Jagger J, Sharpe M. The microcirculation as a functional system. Crit Care. 2005;9 Suppl 4:S3–8.

    PubMed  PubMed Central  Google Scholar 

  209. Astiz ME, DeGent GE, Lin RY. Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med. 1995;23:265.

    CAS  PubMed  Google Scholar 

  210. Schumacker PT, Wood LDH. Limitations of aerobic metabolism in critically illness. Chest. 1984;85:453–4.

    CAS  PubMed  Google Scholar 

  211. Bellomo R, Wan L, May C. Vasoactive drugs and acute kidney injury. Crit Care Med. 2008;36(Suppl):S179–86.

    CAS  PubMed  Google Scholar 

  212. Vieillard-Baron A. Septic cardiomyopathy. Ann Int Care. 2011;1:6.

    Google Scholar 

  213. Reilly JM, Cunnion RE, Burch-Whitman C. A circulating myocardial depressant substance is associated with cardiac dysfunction and peripheral hypoperfusion (lactic acidemia) in patients with septic shock. Chest. 1989;95:1072–80.

    CAS  PubMed  Google Scholar 

  214. Tavener SA, Kubes P. Is there a role for cardiomyocyte toll-like receptor 4 in endotoxemia? Trends Cardiovasc Med. 2005;15:153–7.

    CAS  PubMed  Google Scholar 

  215. Natanson C, Eichenholz PW, Danner RL. Endotoxin and tumor necrosis factor challenges in dogs stimulate the cardiovascular profile of human septic shock. J Exp Med. 1989;169:823–32.

    CAS  PubMed  Google Scholar 

  216. Brady AJ, Poole-Wilson PA. Circulatory failure in septic shock Nitric oxide: too much of a good thing? Nitric oxide: too much of a good thing? Br Heart J. 1993;70:103–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Rassaf T, Poll LW, Brouzos P. Positive effects of nitric oxide on left ventricular function in humans. Eur Heart J. 2006;27:1699–705.

    CAS  PubMed  Google Scholar 

  218. Brady AJ, Warren JB, Poole-Wilson PA. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol. 1993;265:H176–82.

    CAS  PubMed  Google Scholar 

  219. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Ferdinandy P, Danial H, Ambrus I. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res. 2000;87:241–7.

    CAS  PubMed  Google Scholar 

  221. Vieillard-Baron A, Caille V, Charron C. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med. 2008;36:1701–6.

    PubMed  Google Scholar 

  222. Munt B, Jue J, Gin K, et al. Diastolic filling in human severe sepsis: an echocardiographic study. Crit Care Med. 1998;26:1829–33.

    CAS  PubMed  Google Scholar 

  223. Barraud D, Faivre V, Damy T. Levosimendan restores both systolic and diastolic cardiac performance in lipopolysaccharide-treated rabbits: comparison with dobutamine and milrinone. Crit Care Med. 2007;35:1376–82.

    PubMed  Google Scholar 

  224. Gkisioti S, Mentzelopoupus SD. Vasogenic shock physiology. Open Access Emerg Med. 2011;3:1–6.

    Google Scholar 

  225. Young JD. The heart and circulation in severe sepsis. Br J Anaesth. 2004;93:114–20.

    CAS  PubMed  Google Scholar 

  226. Landry DW, Oliver JA. The pathophysiology of vasodilatory shock. N Engl J Med. 2001;345:588–95.

    CAS  PubMed  Google Scholar 

  227. Titheradge MA. Nitric oxide in septic shock. Biochem Biophys Acta. 1999;1411:437–55.

    CAS  PubMed  Google Scholar 

  228. Taylor BS, Geller DA. Molecular regulation of the human inducible nitric oxide synthase (iNOS) gene. Shock. 2000;13:413–24.

    CAS  PubMed  Google Scholar 

  229. Kotsovolis G, Kallaras K. The role of endothelium and endogenous vasoactive substances in sepsis. Hippokratia. 2010;14:88–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Ochoa JB, Udekwu AO, Billiar TR. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg. 1991;214:612–26.

    Google Scholar 

  231. Mosi R, Seguin B, Cameron B. Mechanistic studies on AMD6221: a ruthenium- based nitric oxide scavenger. Biochem Biophys Res Commun. 2002;29:519–29.

    Google Scholar 

  232. Matsuda N, Hattori Y. Vascular biology in sepsis: pathophysiological and therapeutic significance of vascular dysfunction. J Smooth Muscle Res. 2007;43:117–37.

    PubMed  Google Scholar 

  233. Parker MM, Shelhamer JH, Bacharach SL. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 1984;100:483–90.

    CAS  PubMed  Google Scholar 

  234. Weng L, Liu YT, Du B. The prognostic value of left ventricular systolic function measured by tissue Doppler imaging in septic shock. Crit Care. 2012;16:R71–9.

    PubMed  PubMed Central  Google Scholar 

  235. Repesse X, Charron C, Vieillard-Baron A. Evaluation of left ventricular systolic function revisited in septic shock. Crit Care. 2013;17:164.

    PubMed  PubMed Central  Google Scholar 

  236. Vieillard-Baron A, Schmidt JM, Beauchet A. Early preload adaption in septic shock: a transesophageal echocardiographic study. Anesthesiology. 2001;94:400–6.

    CAS  PubMed  Google Scholar 

  237. Reichek N, Wilson J, Sutton MSJ. Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation. 1982;65:99–108.

    CAS  PubMed  Google Scholar 

  238. Vlachopoulos C, Dima I, Aznaouridis K. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation. 2005;112:2193–200.

    PubMed  Google Scholar 

  239. Kharbanda RK, Walton B, Allen M. Prevention of inflammation -induced endothelial dysfunction: a novel vasculo-protective action of aspirin. Circulation. 2002;105:2600–4.

    CAS  PubMed  Google Scholar 

  240. Pleiner J, Heere-Ress E, Langenberger H. Adrenoreceptor hyporeactivity is responsible for Escherichia coli endotoxin-induced acute vascular dysfunction in humans. Arterioscler Thromb Vasc Biol. 2002;22:95–100.

    CAS  PubMed  Google Scholar 

  241. Nichols WW, O’Rourke MF, editors. McDonalds blood flow in arteries. [Buchverf]. 4th ed. London: Arnold E; 1998. p. 170–222, 284–315, 347–95, 450–76.

    Google Scholar 

  242. Bagshaw SM, George C, Bellomo R. Early acute kidney injury in sepsis: a multicenter evaluation. Crit Care. 2008;12:R47.

    PubMed  PubMed Central  Google Scholar 

  243. Oppert M, Engel C, Brunkhorst FM. Acute renal failure in patients with severe sepsis and septic shock–a significant independent risk factor for mortality: results from the German Prevalence Study. Nephrol Dial Transplant. 2008;23:904–9.

    PubMed  Google Scholar 

  244. Vincent JL, Sakr Y, Sprung CL. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–53.

    PubMed  Google Scholar 

  245. Parmar A, Langenberg C, Wan L. Epidemiology of septic acute kidney injury. Curr Drug Targets. 2009;10:1169–78.

    CAS  PubMed  Google Scholar 

  246. Bagshaw SM, Uchino S, Bellomo R. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol. 2007;2:431–9.

    PubMed  Google Scholar 

  247. Lehman L, Daeed M, Moody G. Hypotension as a risk factor for acute kidney injury in ICU patients. Comput Cardiol. 2010;37:1095–8.

    Google Scholar 

  248. Wan L, Bagshaw SM, Langenberg C. Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med. 2008;36:S198–203.

    PubMed  Google Scholar 

  249. Chvojka J, Sykora R, Karvunidis T. New developments in septic acute kidney injury. Physiol Res. 2010;59:859–69.

    CAS  PubMed  Google Scholar 

  250. Langenberg C, Bellomo R, May C. Renal blood flow in sepsis. Crit Care. 2005;9:R363–74.

    PubMed  PubMed Central  Google Scholar 

  251. Payen D, Lukaszewicz A-C, Legrand M. A multicentre study os acute kidney injury in severe sepsis and septic shock: association with inflammatory phenotype and HLA genotype. PLoS One. 2012;7:e35838.

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. J Am Soc Nephrol. 2005;16:117–24.

    Google Scholar 

  253. Benes J, Chvojka J, Sykora R. Searching for mechanisms that matter in early septic acute kidney injury: an experimental study. Crit Care. 2011;15:R256.

    PubMed  PubMed Central  Google Scholar 

  254. Lerolle N, Guerot E, Faisy C. Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med. 2006;32:1553–9.

    PubMed  Google Scholar 

  255. Sladen RN, Landry D. Renal blood flow regulation, autoregulation, and vasomotor nephropathy. Anesth Clin North Am. 2000;18:791–807.

    CAS  Google Scholar 

  256. Yamaguchi N, Jesmin S, Zaedi S. Time-dependent expression of renal vaso-regulatory molecules in LPS-induced endotoxemia in rat. Peptides. 2006;27:2258–70.

    CAS  PubMed  Google Scholar 

  257. Wan L, Bellomo R, Giantomaso D. The pathogenesis of septic acute renal failure. Curr Opin Crit Care. 2003;9:496–502.

    PubMed  Google Scholar 

  258. Kox WJ, Volk T, Kox SN. Immunomodulatory therapies in sepsis. Intensive Care Med. 2000;26(Suppl):124–8.

    Google Scholar 

  259. Majetschak M, Flach R, Kreuzfelder E. The extent of traumatic damage determines a graded depression of the endotoxin responsiveness of peripheral blood mononuclear cells from patients with blunt injuries. Crit Care Med. 1999;27:313–8.

    CAS  PubMed  Google Scholar 

  260. Docke WD, Randow F, Syrbe U. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;3:678–81.

    CAS  PubMed  Google Scholar 

  261. Bistrian BR. Dietary treatment in secondary wasting and cachexia. J Nutr. 1999;129(Suppl):290–4.

    Google Scholar 

  262. Raghavan M, Marik PE. Management of sepsis during the early “golden hours”. J Emerg Med. 2006;31:185–99.

    PubMed  Google Scholar 

  263. De Gaudio AR, Rinaldi S, Chelazzi C. Pathophysiology of sepsis in the elderly: clinical impact and therapeutic considerations. Curr Drug Targets. 2009;10:60–70.

    PubMed  Google Scholar 

  264. Girard TD, Opal SM, Ely EW. Insights into severe sepsis in older patients: from epidemiology to evidence-based management. Clin Infect Dis. 2005;40:719–27.

    PubMed  Google Scholar 

  265. Cohen J, Brun-Buisson C, Torres A. Diagnosis of infection in sepsis: an evidence based review. Crit Care Med. 2004;32(Suppl):S466–94.

    PubMed  Google Scholar 

  266. Morris DL, Chambers HF, Morris MG. Hemodynamic characteristics of patients with hypothermia due to occult infection and other causes. Ann Intern Med. 1985;102:153–7.

    CAS  PubMed  Google Scholar 

  267. Cohen J. Sepsis and septic shock: inching forward. Clin Med. 2009;9:256–7.

    PubMed  Google Scholar 

  268. Carlet J, Cohen J, Calandra T. Sepsis: time to reconsider the concept. Crit Care Med. 2008;36:964–6.

    PubMed  Google Scholar 

  269. Dellinger RP. Shock overview. Semin Respir Crit Care Med. 2004;25:619–28.

    PubMed  Google Scholar 

  270. Hunter JD, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104:3–11.

    CAS  PubMed  Google Scholar 

  271. Nasa P, Juneja D, Singh O. Severe sepsis and septic shock in elderly: an overview. World J Crit Care. 2012;1:23–30.

    Google Scholar 

  272. Opal SM, Girard TD, Ely EW. The immunopathogenesis of sepsis in the elderly patients. Clin Infect Dis. 2005;41 Suppl 7:S504–12.

    CAS  PubMed  Google Scholar 

  273. Cornbleet PJ. Clinical utility of the band count. Clin Lab Med. 2002;22:101–36.

    PubMed  Google Scholar 

  274. Wenz B, Gennis P, Canova C. The clinical utility of the leukocyte differential in emergency medicine. Am J Clin Pathol. 1986;86:298–303.

    CAS  PubMed  Google Scholar 

  275. Callaham M. Inaccuracy and expense of the leukocyte count in making urgent clinical decisions. Ann Emerg Med. 1986;15:774–81.

    CAS  PubMed  Google Scholar 

  276. Gerlach H. Sepsis. [Buchverf]. In: Moreno R, Ranieri R, Rhodes M, Kuhlen A, editors. 25 years of progress and innovation in intensive care medicine. Berlin: Med. Wissenschaftliche Verlagsgesellschaft; 2007. p. 141.

    Google Scholar 

  277. Marshall JC, Vincent JL, Fink MP. Measures, markers, and mediators: toward a staging system for clinical sepsis: a report of the fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25–26, 2000. Crit Care Med. 2003;31:1560–7.

    PubMed  Google Scholar 

  278. Tang BM, Eslick GD, Craig JC. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis. 2007;7:210–7.

    CAS  PubMed  Google Scholar 

  279. Gattas DJ, Cook DJ. Procalcitonin as a diagnostic test for sepsis: health technology assessment in the ICU. J Crit Care. 2003;18:52–8.

    PubMed  Google Scholar 

  280. de Werra I, Jaccard C, Corradin SB. Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparisons in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Crit Care Med. 1997;25:607–13.

    PubMed  Google Scholar 

  281. Christ-Crain M, Jaccard-Stolz D, Bingisser R. Effect of procalcitonin-guided treatment on antibiotic use and outcome in power respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet. 2004;363:600–7.

    CAS  PubMed  Google Scholar 

  282. Mello PMV, Sharma VK, Dellinger RP. Shock overview. Semin Respir Crit Care Med. 2004;25:619–28.

    PubMed  Google Scholar 

  283. Vincent JL, Roman A, Kahn RJ. Dobutamine administration in septic shock: addition to a standard protocol. Crit Care Med. 1990;18:689–93.

    CAS  PubMed  Google Scholar 

  284. Waxman K, Nolan LS, Shoemaker WC. Sequential perioperative lactate determination: physiological and clinical implications. Crit Care Med. 1982;10:96–9.

    CAS  PubMed  Google Scholar 

  285. Shapiro NI, Howell MD, Talmor D. Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med. 2005;45:524–8.

    PubMed  Google Scholar 

  286. Bakker J, Gris P, Coffernils M. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg. 1996;171:221–6.

    CAS  PubMed  Google Scholar 

  287. Cunha BA. Sepsis and septic shock: selection of empiric antimicrobial therapy. Crit Care Clin. 2008;24:313–34.

    CAS  PubMed  Google Scholar 

  288. Reimer LG, Wilson ML, Weinstei MP. Update on detection of bacteremia and fungemia. Clin Microbiol Rev. 1997;10:444–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Munson EL, Diekema DL, Beekmann SE. Detection and treatment of bloodstream infection: laboratory reporting and antimicrobial management. J Clin Microbiol. 2003;41:495–7.

    PubMed  PubMed Central  Google Scholar 

  290. Bochud P-Y, Glauser MP, Calandra T. Antibiotics in sepsis. Intensive Care Med. 2001;27 Suppl 1:S33–48.

    PubMed  Google Scholar 

  291. Washington 2nd JA, Ilstrup DM. Blood cultures: issues and controversies. Rev Infect Dis. 1986;8:792–800.

    PubMed  Google Scholar 

  292. Aronson MD, Bor DH. Blood cultures. Ann Intern Med. 1987;106:246–53.

    CAS  PubMed  Google Scholar 

  293. Seifert H. The clinical importance of microbiological findings in the diagnosis and management of bloodstream infections. Clin Infect Dis. 2009;48 Suppl 4:S238–45.

    PubMed  Google Scholar 

  294. Lee A, Mirrett S, Reller LB. Detection of bloodstream infections in adults: how many blood cultures are needed? J Clin Microbiol. 2007;45:3546–8.

    PubMed  PubMed Central  Google Scholar 

  295. Cockerill III FR, Wilson JW, Vetter EA. Optimal testing parameters for blood cultures. Clin Infect Dis. 2004;38:1724–30.

    PubMed  Google Scholar 

  296. Kumar A, Roberts D, Wood KE. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96.

    PubMed  Google Scholar 

  297. Lodise TP, McKinnon PS, Swiderski L. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003;36:1418–23.

    PubMed  Google Scholar 

  298. Cruz K, Dellinger RP. Diagnosis and source of sepsis: the utility of clinical findings. [Buchverf.]. In: Carlet J, Opal SM, Vincent JL, editors. The sepsis test. Boston: Kluwer Academic Publishers; 2002. p. 11–28.

    Google Scholar 

  299. Shapiro NI. Who needs a blood culture? A prospectively derived and validated prediction rule. J Emerg Med. 2008;35:255.

    PubMed  Google Scholar 

  300. Mermel LA, Maki DG. Detection of bacteremia in adults: consequences of culturing an inadequate volume of blood. Ann Intern Med. 1993;119:270–2.

    CAS  PubMed  Google Scholar 

  301. Lamy B, Roy P, Carret G. What is the relevance of obtaining multiple blood samples for culture? A comprehensive model to optimize the strategy for diagnosing bacteremia. Clin Infect Dis. 2002;35:842–50.

    PubMed  Google Scholar 

  302. Levinson AT, Casserly BP, Levy MM. Reducing mortality in severe sepsis and septic shock. Semin Respir Crit Care Med. 2011;32:195–205.

    PubMed  Google Scholar 

  303. Sepsis-Gesellschaft, Deutsche. AWMF-online. Prävention, Diagnose, Therapie und Nachsorge der Sepsis. [Online] Feb 2010. [Zitat vom: 27 Jul 2013].

    Google Scholar 

  304. Cunha BA. Sepsis and its mimics in the CCU. [Buchverf.]. In: Cunha BA, editor. Infectious diseases in clinical practice. 2nd ed. New York: Informa Healthcare; 2007.

    Google Scholar 

  305. Perman SM, Goyal M, Gaieski DF. Initial emergency department diagnosis and management of adult patients with severe sepsis and septic shock. Scand J Trauma Resusc Emerg Med. 2012;20:41.

    PubMed  PubMed Central  Google Scholar 

  306. Marik PE. Surviving sepsis: going beyond the guidelines. Ann Intensive Care. 2011;1:17–29.

    PubMed  PubMed Central  Google Scholar 

  307. Gaieski DF, Mikkelson ME, Band RA. Impact of time to antibiotics on survival in patients with severe sepsis and septic shock on whom early goal-directed therapy was initiated in the emergency department. Crit Care Med. 2010;38:1045–53.

    PubMed  Google Scholar 

  308. Bochud P, Bonten Y, Marchetti MO. Antimicrobial therapy for patients with severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004;32(Suppl):S495–512.

    CAS  PubMed  Google Scholar 

  309. Russel F. Management of sepsis. N Engl J Med. 2006;355:1699–713.

    Google Scholar 

  310. Natanson C, Danner RJ, Reilly JM. Antibiotics versus cardiovascular support in canine model of human septic shock. Am J Physiol. 1990;259:H1440–7.

    CAS  PubMed  Google Scholar 

  311. Tarassenko L, Hann A, Young D. Integrated monitoring and analysis for early warning of patient deterioration. Br J Anaesth. 2006;97:64–8.

    CAS  PubMed  Google Scholar 

  312. Perman SM, Goyal M, Gaiseki DF. Initial emergency department diagnosis and management of adult patients with severe sepsis and septic shock. Scan J Trauma Resusc Emerg Med. 2012;20:41.

    Google Scholar 

  313. Pushkarich MA, Trzeciak S, Shapiro NI, Emergency Medicine Shock Research Network (EMSHOCKNET). Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Crit Care Med. 2011;39:2066–71.

    Google Scholar 

  314. Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A. Impact of inadequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med. 2003;31:2742–51.

    PubMed  Google Scholar 

  315. MacArthur RD, Miller T, Albertson T. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis. 2004;38:285–8.

    Google Scholar 

  316. Kollef MH, Sherman G, Ward S. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest. 1999;115:462–74.

    CAS  PubMed  Google Scholar 

  317. Ibrahim EH, Sherman G, Ward S. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest. 2000;118:146–55.

    CAS  PubMed  Google Scholar 

  318. Kreger BE, Craven DE, McCabe WR. Gram-negative bacteremia. Am J Med. 1980;68:344–55.

    CAS  PubMed  Google Scholar 

  319. Bryan CS, Reynolds KL, Brenner ER. Analysis of 1,186 episodes of gram-negative bacteremia in non-university hospitals: the effects of antimicrobial therapy. Rev Infect Dis. 1983;5:629–38.

    CAS  PubMed  Google Scholar 

  320. Vallo J, Relles J, Ocagavia A. Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest. 2003;123:1615–23.

    Google Scholar 

  321. Diaz-Martin A, Martinez-Gonzalez ML, Ferrer R. Antibiotic prescription patterns in empirical therapy of severe sepsis: combination of antimicrobials with different mechanisms of action reduce mortality. Crit Care. 2012;16:R223.

    PubMed  PubMed Central  Google Scholar 

  322. Brunkhorst FM, Oppert M, Marx G. Effect of empirical treatment with moxifloxacin and meropenem vs meropenem on sepsis-related organ dysfunction in patients with severe sepsis. JAMA. 2012;307:2390–9.

    CAS  PubMed  Google Scholar 

  323. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale antibacterial dosing of mice and men. Clin Infect Dis. 1998;16:1–12.

    Google Scholar 

  324. Parrillo JE, Parker MM, Natanson C. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med. 1990;113:227–42.

    CAS  PubMed  Google Scholar 

  325. Sharper J, Ahmed J, Schafer T. Volume therapy with colloid solutions preserves intestinal microvascular perfusion in endotoxemia. Resuscitation. 2008;76:120–8.

    Google Scholar 

  326. Trzeciak S, McCoy JV, Dellinger PR. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–7.

    PubMed  PubMed Central  Google Scholar 

  327. Ospina-Tascon G, Neves AP, Occhipinti G. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med. 2010;36:949–55.

    PubMed  Google Scholar 

  328. Al-Khafaji AH, Webb AR. Fluid resuscitation. Anaesth Crit Care Pain. 2004;4:127–31.

    Google Scholar 

  329. Ognibene FP. Hemodynamic support during sepsis. Clin Chest Med. 1996;17:279–87.

    CAS  PubMed  Google Scholar 

  330. Haupt MT, Gilbert EM, Carlson RW. Fluid loading increases oxygen consumption in septic patients with lactic acidosis. Am Rev Respir Dis. 1985;131:912–6.

    CAS  PubMed  Google Scholar 

  331. Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1:1.

    PubMed  PubMed Central  Google Scholar 

  332. Rivers E, Nguyen B, Havstad S. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    CAS  PubMed  Google Scholar 

  333. Wiedemann HP, Wheeler AP, Bernard GR. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.

    CAS  PubMed  Google Scholar 

  334. Uchino S, Bellomo R, Morimatsu H. Pulmonary artery catheter versus pulse contour analysis: a prospective epidemiological study. Crit Care. 2006;10:R174.

    PubMed  PubMed Central  Google Scholar 

  335. Murphy CV, Schramm GE, Doherty JA. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;136:102–9.

    PubMed  Google Scholar 

  336. Boyd JH, Forbes J, Nakada TA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.

    PubMed  Google Scholar 

  337. Rivers EP. Fluid management strategies in acute lung injury: liberal, conservative, or both? N Engl J Med. 2006;355:2564–75.

    Google Scholar 

  338. Levy MM, Macias WL, Vincent J-L. Early changes in organ function predict eventual survival in severe sepsis. Crit Care Med. 2005;33:2194–201.

    PubMed  Google Scholar 

  339. Pottecher J, Deruddre S, Teboul JL. Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med. 2010;36:1867–74.

    PubMed  Google Scholar 

  340. Rosenberg AL, Dechert RE, Park PK. Review on a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. J Intensive Care Med. 2009;24:35–46.

    PubMed  Google Scholar 

  341. Reinhart K, Karzai W. Anti-tumor necrosis factor therapy in sepsis: an update on clinical trials and lessons learned. Crit Care Med. 2001;29(Suppl):S121–5.

    CAS  PubMed  Google Scholar 

  342. Bernard GR, Vincent JL, Laterre P-F. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709.

    CAS  PubMed  Google Scholar 

  343. Jr Fisher CJ, Agosti JM, Opal SM. Treatment of septic shock with tumor necrosis factor receptor: Fc fusion protein. N Engl J Med. 1996;334:1697–702.

    CAS  PubMed  Google Scholar 

  344. Otero RM, Nguyen HB, Huang DT. Early-goal-directed therapy in severe sepsis and septic shock revisited: concepts, controversies, and contemporary findings. Chest. 2006;130:1579–95.

    PubMed  Google Scholar 

  345. He ZY, Gao Y, Wang XR. Clinical evaluation of execution of early goal directed therapy in septic shock. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2007;19:14–6.

    PubMed  Google Scholar 

  346. Kortgen A, Niederprüm P, Bauer M. Implementation of an evidences-based “standard operating procedure” and outcome in septic shock. Crit Care Med. 2006;34:943–9.

    PubMed  Google Scholar 

  347. Shapiro NI, Howell MD, Talmor D. Implementation and outcomes of the Multiple Urgent Sepsis Therapies (MUST) protocol. Crit Care Med. 2006;34:1025–32.

    PubMed  Google Scholar 

  348. Trzeciak S, Dellinger RP, Abate NL. Translating research to clinical practice: a 1-year experience with implementing early goal–directed therapy for septic shock in the emergency department. Chest. 2006;129:225–32.

    PubMed  Google Scholar 

  349. Barochia A, Cui X, Vitberg D. Bundled care for septic shock: an analysis of clinical trials. Crit Care Med. 2010;38:668–78.

    PubMed  PubMed Central  Google Scholar 

  350. Hicks P, Cooper S, Webb J. The surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2008. An assessment by the Australian and New Zealand Intensive Care Society. Anaesth Intensive Care. 2008;36:149–51.

    CAS  PubMed  Google Scholar 

  351. Perel A. Bench-to-bedside review: the initial hemodynamic resuscitation of the septic patient according to surviving sepsis campaign guidelines–does one size fit all? Crit Care. 2008;12:1.

    Google Scholar 

  352. Marik PE, Varon J. Early goal-directed therapy (EGDT): on terminal life support? Am J Emerg Med. 2010;28:243–5.

    PubMed  Google Scholar 

  353. Marik PE, Baram M, Vahid B. Does the central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    PubMed  Google Scholar 

  354. Mirsky MR, Payen D. Functional hemodynamic monitoring. Crit Care. 2005;9:566.

    Google Scholar 

  355. Pinsky MR. Hemodynamic evaluation and monitoring in the ICU. Chest. 2007;132:2020–9.

    PubMed  Google Scholar 

  356. Bafaquech F. CVP and volume responsiveness of cardiac output. Am J Respir Crit Care Med. 2004;169:A344.

    Google Scholar 

  357. Blumberg N, Heal JM. Transfusion-induced immunomodulation and its possible role in cancer recurrence and perioperative bacterial infection. Yale J Biol Med. 1990;63:429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  358. Shander A, Goodnough LT. Why an alternative to blood transfusion? Crit Care Clin. 2009;25:261–77.

    PubMed  Google Scholar 

  359. Shander A, Javidroozi M, Ozawa S. What is really dangerous: anaemia or transfusion? Br J Anaesth. 2011;107(S 1):i41–59.

    PubMed  Google Scholar 

  360. Barrett NA, Kam PC. Transfusion-related acute lung injury: a literature review. Anaesthesia. 2006;61:777–85.

    CAS  PubMed  Google Scholar 

  361. Shander A, Fink A, Javidroozi M. Appropriateness of allogeneic red blood cell transfusion: the international consensus conference on transfusion outcomes. Transfus Med Rev. 2011;25:232–46.

    PubMed  Google Scholar 

  362. Marik PE. Hazards of blood transfusions. Br J Hosp Med. 2009;70:12–5.

    Google Scholar 

  363. Napolitano LM, Kurek S, Luchette FA. Clinical practice guideline: red blood cell transfusion in adult trauma and critical care. Crit Care Med. 2009;37:3124–57.

    PubMed  Google Scholar 

  364. Improvement, Joint Commission on Healthcare. Raising the bar with the bundles: improving the quality of care by improving the work environment. Joint Commission Perspectives on Patient Safety. [Online] April 2006. [Zitat vom: 2 Sep 2009]. http://www.ingentaconnect.com/content/jcaho/jcpps/2006/00000006/00000004/art00003.

  365. Harden C. What is a bundle? A resource from the Institute for Healthcare Improvement. [Online] [Zitat vom: 27 Feb 2008]. http://www.ihi.org/IHI/Topics/CriticalCare/IntensiveCare/ImprovementStories/WhatIsaBundle.htm.

  366. Rabuel C, Mebazaa A. Septic shock: a heart story since the 1960s. Intensive Care Med. 2006;32:799–807.

    CAS  PubMed  Google Scholar 

  367. De Backer D, Crteur J, Dubois MJ. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34:403–8.

    PubMed  Google Scholar 

  368. De Backer D, Donadello K, Taccone FS. Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care. 2011;1:27.

    PubMed  PubMed Central  Google Scholar 

  369. Sackett DL, Rosenberg WM, Gray JA. Evidence-based medicine: what it is and what it isn’t. BMJ. 1996;312:71–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  370. Delany A, Peake SL, Bellomo R. Australian resuscitation in sepsis evaluation trial statistical plan. Emerg Med Australas. 2013;25:406–15.

    Google Scholar 

  371. Pike F, Yealy DM, Kellum J. Protocolized care for early septic shock (ProCESS) statistical analysis plan. Crit Care Resusc. 2013;15:301–10.

    PubMed  PubMed Central  Google Scholar 

  372. Power S, Harrison D, Mouncey P. The protocolised management in sepsis (PRoMISE) trial statistical analysis plan. Crit Care Resusc. 2013;15:311–7.

    PubMed  Google Scholar 

  373. Conterno LO, Silva Filho CR, Ruggeberg JU. Conjugate vaccines for preventing meningococcal C meningitis and septicemia. Cochrane Database Syst Rev. 2006;3, CD001834.

    PubMed  Google Scholar 

  374. Swingler G, Fransman D, Hussey G. Conjugate vaccines for preventing Haemophilus influenzae type B infections. Cochrane Database Syst Rev. 2007;2, CD001729.

    PubMed  Google Scholar 

  375. Mykietiuk A, Carratala J, Dominguez A. Effect of prior pneumococcal vaccination on clinical outcome of hospitalized adults with community-acquired pneumococcal pneumonia. Eur J Clin Microbiol Infect Dis. 2006;25:457–62.

    CAS  PubMed  Google Scholar 

  376. Plebani A, Soresina A, Rondelli R. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104:221–30.

    CAS  PubMed  Google Scholar 

  377. Dark PM, Dean P, Warhurst G. Bench-to-bedside review: the promise of rapid infection diagnosis during sepsis using polymerase chain reaction-based pathogen detection. Crit Care. 2009;13:217.

    PubMed  PubMed Central  Google Scholar 

  378. NISS. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992–April 2000, issued June 2000. Am J Infect Control. 2000;28:429–48.

    Google Scholar 

  379. Cunha BA. Antibiotic treatment of sepsis. Med Clin North Am. 1995;79:551–8.

    CAS  PubMed  Google Scholar 

  380. Zubert S, Funk DJ, Kumar A. Antibiotics in sepsis and septic shock: like everything else in life, timing is everything. Crit Care Med. 2010;38:1211–2.

    PubMed  Google Scholar 

  381. Torres A, Serra-Batlles J, Ferrer A. Severe community-acquired pneumonia: epidemiology and prognostic factors. Am Rev Respir Dis. 1991;144:312–8.

    CAS  PubMed  Google Scholar 

  382. Cunha BA. Antibiotic essentials. 7th ed. Royal Oak: Physicians Press; 2008.

    Google Scholar 

  383. Hardawy RM. A review of septic shock. Am Surg. 2000;66:22–9.

    Google Scholar 

  384. Lim WS, Baudouin SV, George RC. British Thoracic Society guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax. 2009;64(Suppl III):iii 1–55.

    Google Scholar 

  385. Cabarello J, Rello J. Combination antibiotic therapy for community-acquired pneumonia. Ann Intensive Care. 2011;1:48.

    Google Scholar 

  386. Lodise TP, Kwa A, Cosler L. Ritel : Comparison of beta-lactam and macrolide combination therapy versus flourquinolone monotherapy in hospitalized Veterans Affair patients with community-acquired pneumonia. Antimicrob Agents Chemother. 2007;51:3977–82.

    Google Scholar 

  387. Wunderink RG, Mandell L. Adjunctive therapy in community-acquired. Semin Respir Crit Care Med. 2012;33:311–8.

    PubMed  Google Scholar 

  388. Rodríguez A, Mendia A, Sirvent JM. Combination antibiotic therapy improves survival in patients with community-acquired pneumonia and shock. Crit Care Med. 2007;35:1493–8.

    PubMed  Google Scholar 

  389. Bodí M, Rodríguez A, Solé-Violán J, Community-Acquired Pneumonia Intensive Care Units (Capuci) Study Investigators. Antibiotic prescription for community-acquired pneumonia in the intensive care unit: impact of adherence to Infectious Diseases Society of America guidelines on survival. Clin Infect Dis. 2005;41:1709–16.

    PubMed  Google Scholar 

  390. File TM, Bartlet JG, Romer AR. Treatment of community-acquired pneumonia in patients who require hospitalization. [Online] 14 June 2013. [Zitat vom: 25 July 2013]. http://www.uptodate.com/contents/treatment-of-community-acquired-pneumonia-in-adults-who-require-hospitalization#H5.

  391. Marik PE. Assessment of intravascular volume: a comedy of errors. Crit Care Med. 2001;29:1635–6.

    CAS  PubMed  Google Scholar 

  392. Marik PE, Varon J. Sepsis: state of the art. Dis Mon. 2001;47:465–532.

    CAS  PubMed  Google Scholar 

  393. Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34:659–63.

    PubMed  Google Scholar 

  394. Vavallaro F, Sandroni C, Marano C. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36:1475–83.

    Google Scholar 

  395. Lafanechere A, Pene F, Goulenok C. Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients. Crit Care. 2006;10:R132.

    CAS  PubMed  PubMed Central  Google Scholar 

  396. Andrijauskas A, Svensen CH, Ivaskevicius J. Goal directed fluid therapy revised: indirect monitoring of interstitial fluid accumulation during mini fluid challenges with crystalloids. Open Conf Proc J. 2012;3:43–51.

    Google Scholar 

  397. Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis. Chest. 2008;133:252–63.

    PubMed  Google Scholar 

  398. Boulain T, Achard JM, Teboul JL. Changes in blood pressure induced by passive leg raising predict response to fluid loading in critically ill patients. Chest. 2002;121:1245–52.

    PubMed  Google Scholar 

  399. Rackow EC, Falk JL, Fein IA. Fluid resuscitation in circulatory shock: a comparison of cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med. 1983;11:839–50.

    CAS  PubMed  Google Scholar 

  400. Thooft A, Favory R, Salgado-Ribeiro D. Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care. 2011;15:R222.

    PubMed  PubMed Central  Google Scholar 

  401. Bellomo R, Kellum JA, Wisnieski SR. Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med. 1999;159:1186–92.

    CAS  PubMed  Google Scholar 

  402. Guyton AC, Hall JE. Textbook of medical physiology. Philadelphia: Saunders; 2005.

    Google Scholar 

  403. Pottecher S, Cavalat H, Dupont J. Hemodynamic management of severe sepsis: recommendations of the French intensive care societies (SFAR/SRLF) consensus conference, 13 October 2005, Paris, France. Crit Care. 2006;10:311.

    PubMed  PubMed Central  Google Scholar 

  404. Bourgoin A, Leone M, Delmas A. Increasing mean arterial pressure in patients with septic shock: Effects on oxygen variables and renal function. Crit Care Med. 2005;33:780–6.

    CAS  PubMed  Google Scholar 

  405. Dubin A, Pozo MO, Casabella CA. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92.

    PubMed  PubMed Central  Google Scholar 

  406. Perrson PB. Renal blood flow autoregulation in blood pressure control. Curr Opin Nephrol Hypertens. 2002;11:67–72.

    Google Scholar 

  407. Correa TD, Vuda M, Takala J. Increasing mean arterial blood pressure in sepsis: effects on fluid balance, vasopressor load and renal function. Crit Care. 2013;17:R21.

    PubMed  PubMed Central  Google Scholar 

  408. Badin J, Boulain T, Ehrmann S. Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Crit Care. 2011;15:R135.

    PubMed  PubMed Central  Google Scholar 

  409. De Backer D, Biston P, Devriendt J. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.

    PubMed  Google Scholar 

  410. Jhanji S, Stirling S, Patel N. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37:1961–6.

    CAS  PubMed  Google Scholar 

  411. De Backer D, Aldecoa C, Njimi H. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med. 2012;40:725–30.

    PubMed  Google Scholar 

  412. Alsous F, Khamiees M, DeGirolamo A. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000;117:1749–54.

    CAS  PubMed  Google Scholar 

  413. Groeneveld AB, Polderman KH. Acute lung injury, overhydration or both. Crit Care. 2005;9:136–7.

    PubMed  PubMed Central  Google Scholar 

  414. Astiz ME, Rachow EC. Crystalloid-colloid controversy revisited. Crit Care Med. 1999;27:34–5.

    CAS  PubMed  Google Scholar 

  415. Perel A, Roberts I. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2011;3, CD000567.

    PubMed  Google Scholar 

  416. Choi PT, Yip G, Quinonez LG. Crystalloids vs colloids in fluid resuscitation: a systematic review. Crit Care Med. 1999;27:200–10.

    CAS  PubMed  Google Scholar 

  417. Finfer S, Bellomo R, Boyce N. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;250:2247–56.

    Google Scholar 

  418. Jungheinrich C, Scharpf R, Wargenau M. The pharmacokinetics and tolerability on an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6%, 500 ml) in mild-to severe renal impairment. Anaesth Analg. 2002;95:544–51.

    CAS  Google Scholar 

  419. Kato A, Yonemura K, Matsushima H. Complication of oliguric acute renal failure in patients treated with low-molecular weight dextran. Ren Fail. 2001;23:679–84.

    CAS  PubMed  Google Scholar 

  420. Finfer S, Chittock DR, Su SY, NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    PubMed  Google Scholar 

  421. Study, Investigators of the NICE-SUGAR. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367:1108–18.

    Google Scholar 

  422. Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response! Crit Care. 2013;17:305.

    PubMed  PubMed Central  Google Scholar 

  423. Cade JF. High risk of the critically ill for venous thromboembolism. Crit Care Med. 1982;10:448–50.

    CAS  PubMed  Google Scholar 

  424. Hirsch DR, Ingenito EP, Goldhaber SZ. Prevalence of deep venous thrombosis among patients in medical intensive care. JAMA. 1995;274:335–7.

    CAS  PubMed  Google Scholar 

  425. Garlund B. Randomized, controlled trial of low-dose heparin for prevention of fatal pulmonary embolism in patients with infectious disease: the Heparin Prophylaxis Study Group. Lancet. 1996;347:1357–61.

    Google Scholar 

  426. Geerts W, Cook D, Shelby R. Venous thromboembolism and its prevention in critical care. J Crit Care. 2002;17:95–104.

    PubMed  Google Scholar 

  427. Kupfer Y, Anwar J, Seneviratne C. Prophylaxis with subcutaneous heparin significantly reduces the incidence of deep venous thrombophlebitis in the critically ill. Am J Crit Care Med. 1999;159(Suppl):A519.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krüger, W., Ludman, A.J. (2014). Sepsis. In: Core Knowledge in Critical Care Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54971-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54971-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54970-0

  • Online ISBN: 978-3-642-54971-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics