Skip to main content

Quantum Mechanics: Harbinger of a Non-commutative Probability Theory?

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8369))

Abstract

In this paper we discuss the relevance of the algebraic approach to quantum phenomena first introduced by von Neumann before he confessed to Birkoff that he no longer believed in Hilbert space. This approach is more general and allows us to see the structure of quantum processes in terms of non-commutative probability theory, a non-Boolean structure of the implicate order which contains Boolean sub-structures which accommodates the explicate classical world. We move away from mechanical ‘waves’ and ‘particles’ and take as basic what Bohm called a structure process. This enables us to learn new lessons that can have a wider application in the way we think of structures in language and thought itself.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Unfortunately I have to make it clear that the spirit of the view Bohm and I were developing together had little in common with the proponents of the subject now called “Bohmian mechanics”.

  2. 2.

    Of course position and momentum have different dimensions so we choose \(x\leftrightarrow \widehat{X}\) and \(p\leftrightarrow \epsilon \widehat{P}\). Note that we are not appealing to anything quantum mechanical at this stage. It is only in quantum mechanics that we write \(\epsilon =1/\hbar \).

  3. 3.

    All type I von Neumann algebras have matrix representations.

  4. 4.

    This is the structure used in the Huygens construction and hence the Feynman path integral method [31].

  5. 5.

    See Bartlet [36] for a discussion of this point.

References

  1. Gell-Mann, M.: The nature of matter. In: Mulvey, J.H. (ed.) Wolfson College Lectures 1980, p. 169. Clarendon Press, Oxford (1981)

    Google Scholar 

  2. Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012). doi:10.1038/nature11472

    Article  Google Scholar 

  3. Flack, R.: Private communication

    Google Scholar 

  4. Bohr, N.: Atomic Physics and Human Knowledge, p. 39. Science Editions, New York (1961)

    Google Scholar 

  5. Bohr, N.: Atomic Physics and Human Knowledge, p. 62. Science Editions, New York (1961)

    Google Scholar 

  6. Primas, H.: Pattern recognition in molecular quantum mechanics’. Theoret. Chim. Acta (Berl.) 29, 127–148 (1975)

    Article  Google Scholar 

  7. Primas, H.: Realism and quantum mechanics. In: Pragwitz, D., Skyrms, B., Westerståhl, D. (eds.) Logic, Methodology and Philosophy of Science IX, pp. 609–631. Elsevier, Amsterdam (1994)

    Google Scholar 

  8. Primas, H., Müller-Herold, U.: Quantum-mechanical system theory: a unifying framework for observations and stochastic processes in quantum mechanics. Adv. Chem. Phys. 38, 1–107 (2009)

    Google Scholar 

  9. Bohm, D.: Space, time, and the Quantum theory understood in terms of discrete structural process. In: Proceedings of the International Conference on Elementary Particles, Kyoto, pp. 252–287 (1965)

    Google Scholar 

  10. Fichte, J.G.: Introductions to the Wissenschaftslehr. p. 51, Translated by Breazeale, D. Hackett Press, Indianapolis (1994)

    Google Scholar 

  11. Hankins, T.L.: Algebra as pure time: William Rowan Hamilton and the foundations of algebra. In: Machamer, P.K., Turnbull, R.G. (eds.) Motion and Time, Space and Matter, pp. 327–359. Ohio State University Press, Columbus (1976)

    Google Scholar 

  12. Grassmann, H.G.: Math, Gesammeth, Phyk. Werke, Leipzig (1894) (English translation by Kannenberg, L.C.: A New Branch of Mathematics: The Ausdehnungslehre of 1844 and Other Works. Open Court, Chicago (1995))

    Google Scholar 

  13. Hiley, B.J.: Bohmian Non-commutative Dynamics: History and New Developments. arxiv:1303.6057

    Google Scholar 

  14. Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Maths. Pure Appl. 1, 350–358 (1887)

    MathSciNet  Google Scholar 

  15. Hiley, B.J.: Process, Distinction, Groupoids and Clifford Algebras: an Alternative View of the Quantum Formalism. In: Coecke, B. (ed.) New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 705–752. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Hiley, B.J., Callaghan, R.E.: Clifford algebras and the Dirac-Bohm quantum Hamilton-Jacobi Equation. Found. Phys. 42, 192–208 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. von Neumann, J.: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 570–87 (1931)

    Article  MathSciNet  Google Scholar 

  18. Folland, G.B.: Harmonic Analysis in Phase Space, vol. 122. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  19. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99–123 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zachos, C.K., Fairlie, D.B., Cuthright, T.L.: Overview of phase-space quantization. In: Zachos, C.K., Fairlie, D.B., Cuthright, T.L. (eds.) Quantum Mechanics in Phase Space, pp. 7–34. World Scientific, Singapore (2005)

    Google Scholar 

  21. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras : Spinor Structures. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  22. Gouy, L.G.: Sur une propriété nouvelle des ondes lumineuses. C. R. Acad. Sci. (Paris) 110, 1251–1253 (1890)

    Google Scholar 

  23. Siegman, A.E.: Lasers. Oxford University Press, Oxford (1986)

    Google Scholar 

  24. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hiley, B.J., Monk, N.: Quantum phase space and the discrete Weyl algebra. Mod. Phys. Lett. 8, 3625–3633 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bohm, D.J., Davies, P.G., Hiley, B.J.: Algebraic Quantum Mechanics and Pre-geometry, Quantum Theory: Reconsiderations of Foundations, 3, Växjö, Sweden 2005. Adenier, G., Krennikov, A. Yu, Nieuwenhuizen, Theo, M., (ed.), pp. 314–24. AIP (2006)

    Google Scholar 

  27. Jauch, J.M.: Foundations of Quantum Mechanics. Addison-Wesley, Reading (1968)

    MATH  Google Scholar 

  28. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Maths. 37, 823–843 (1936)

    Article  Google Scholar 

  29. Bell, J.L., Machover, M.: A Course of Mathematical Logic. North Holland, Amsterdam (1977)

    Google Scholar 

  30. Eddington, A.S.: The Philosophy of Physical Science, Ann Arbor Paperback. University of Michigan Press, Michigan (1958)

    Google Scholar 

  31. Feynman, R.P., Hibbs, A.R.: Quantum mechanics and path integrals: Emended Edition. Dover Publications, Mineola (2012)

    Google Scholar 

  32. Feynman, R.P.: Negative Probability. In: Hiley, B.J., Peat, F.D. (eds.) Quantum Implications: Essays in Honour of David Bohm, pp. 235–248. Routledge and Kegan Paul, London (1987)

    Google Scholar 

  33. de Gosson, M.: Quantum blobs. Found. Phys. 43, 1–18 (2012)

    Google Scholar 

  34. Takabayasi, T.: Remarks on the formulation of quantum mechanics with classical pictures and on relations between linear scalar fields and hydrodynamical fields. Prog. Theo. Phys. 9(3), 187–222 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  35. Bohm, D., Hiley, B.J.: On a quantum algebraic approach to a generalised phase space. Found. Phys. 11, 179–203 (1981)

    Article  MathSciNet  Google Scholar 

  36. Bartlett, M.S.: Negative probability. Math. Proc. Cam. Phil. Soc. 41, 71–73 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  37. Philippidis, C., Dewdney, D., Hiley, B.J.: Quantum interference and the quantum potential. Nuovo Cimento 52B, 15–28 (1979)

    Article  MathSciNet  Google Scholar 

  38. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

  39. Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  40. Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Interdisciplinary Applied Mathematics. Springer, New York (2005)

    Google Scholar 

  41. Brown, M.R., Hiley, B.J.: Schrödinger revisited: an algebraic approach. arxiv:quant-ph/0005026 (2000)

    Google Scholar 

  42. Brown, M.R.: The symplectic and metaplectic groups in quantum mechanics and the Bohm interpretation, Ph.D. thesis, University of London (2004)

    Google Scholar 

  43. Varilly, J.C.: An Introduction to Noncommutative Geometry. European Mathematical Society Series of Lectures in Mathematics. European Mathematical Society, Zürich (2006)

    Book  MATH  Google Scholar 

  44. Bohm, D.: Wholeness and the Implicate Order. Routledge, London (1980)

    Google Scholar 

  45. Bohm, D.: A new theory of the relationship between mind and matter. Philos. Psychol. 3, 271–286 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Hiley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hiley, B.J. (2014). Quantum Mechanics: Harbinger of a Non-commutative Probability Theory?. In: Atmanspacher, H., Haven, E., Kitto, K., Raine, D. (eds) Quantum Interaction. QI 2013. Lecture Notes in Computer Science(), vol 8369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54943-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54943-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54942-7

  • Online ISBN: 978-3-642-54943-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics