Skip to main content

Undecidability in Number Theory

  • Chapter
  • First Online:
Model Theory in Algebra, Analysis and Arithmetic

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2111))

Abstract

In these lecture notes we give sketches of classical undecidability results in number theory, like Gödel’s first Incompleteness Theorem (that the first order theory of the integers in the language of rings is undecidable), Julia Robinson’s extensions of this result to arbitrary number fields and rings of integers in them, as well as to the ring of totally real integers, and Matiyasevich’s negative solution of Hilbert’s 10th problem, i.e., the undecidability of the existential first-order theory of the integers. As Hilbert’s 10th problem is still open for the rationals (i.e., the question whether the existential theory of the field of rational numbers is decidable) we also present a sketch of the fact that there is a universal definition of the ring of integers inside the field of rationals. In terms of complexity this is the simplest definition known so far. If one had an existential definition instead then Hilbert’s 10th problem over the rationals would reduce to that over the integers (and hence be, as expected, unsolvable), but, modulo a widely believed in conjecture in number theory, we also indicate why there should be no such existential definition. We conclude with a list of nice open questions in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Even though Tarski may be better known for his decidability results than his undecidability results, one should point out that his ‘Undefinability Theorem’ (1936) that arithmetical truth cannot be defined in arithmetic is very much in the spirit of Gödel’s Incompleteness Theorems (in fact, it was discovered independently by Gödel while proving these). Tarski also proved undecidability of various other first-order theories, like, e.g., abstract projective geometry. This may put our very rough initial picture of the five counterpointing pairs into a more accurate historical perspective.

  2. 2.

    The use of the terms ‘local’ and ‘global’ which one more typically encounters in analysis or in algebraic geometry hints at a deep analogy between number theory and algebraic geometry, more specifically between number fields (i.e. finite extensions of \(\mathbb{Q}\), the global fields of characteristic 0) and algebraic function fields in one variable over finite fields (i.e., finite extensions of the field \(\mathbb{F}_{p}(t)\) of rational functions over \(\mathbb{F}_{p}\), the global fields of positive characteristic). It is one of the big open problems in model theory whether or not the positive characteristic analogue of \(\mathbb{Q}_{p}\), i.e., the local field \(\mathbb{F}_{p}((t))\) of (formal) Laurent series over \(\mathbb{F}_{p}\), is decidable.

  3. 3.

    Sometimes the term p-adically closed refers, more generally, to fields elementarily equivalent to finite extensions of \(\mathbb{Q}_{p}\)—cf. [59].

  4. 4.

    That we write the first name only for the lady is neither gallantry nor sexism: the reason is that there are other Robinsons in the same area: Abraham Robinson, one of the founders of model theory, and the logician and number theorist Raphael Robinson, also Julia’s husband.

  5. 5.

    c K denotes the class number of K, that is, the size of the ideal class group of K. It measures how far \(\mathcal{O}_{K}\) is from being a PID: c K  = 1 iff \(\mathcal{O}_{K}\) is a PID, so c K  = 2 is ‘the next best’. It is not known whether there are infinitely many number fields with c K  = 1.

  6. 6.

    The set E(K) of K-rational points of E is a finitely generated abelian group isomorphic to the direct product of its torsion subgroup E tor (K) and a free abelian group of rank ‘rk \((E(K))\)’.

References

  1. W. Anscombe, Definability in Henselian fields. Ph.D. thesis, Oxford, 2012

    Google Scholar 

  2. G.L. Cherlin, Undecidability of rational function fields in nonzero characteristic. Stud. Log. Found. Math. 112, 85–95 (1984)

    Article  MathSciNet  Google Scholar 

  3. G. Cornelissen, K. Zahidi, Elliptic divisibility sequences and undecidable problems about rational points. J. Reine Angew. Math. 613, 1–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Cornelissen, T. Pheidas, K. Zahidi, Division-ample sets and the Diophantine problem for rings of integers. J. Theor. Nombres Bord. 17, 727–735 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Csicsery, Julia Robinson and Hilbert’s Tenth Problem. Documentary film by Zala Films (2010)

    Google Scholar 

  6. L. Darnière, Decidability and local-global principles, in Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry. Contemporary Mathematics, vol. 270 (American Mathematical Society, Providence, 2000), pp. 139–167

    Google Scholar 

  7. M. Davis, Arithmetical problems and recursively enumerable predicates. J. Symb. Log. 18(1), 33–41 (1953)

    Article  MATH  Google Scholar 

  8. M. Davis, Hilbert’s tenth problem is unsolvable. Am. Math. Monthly 80(3), 233–269 (1973)

    Article  MATH  Google Scholar 

  9. M. Davis, H. Putnam, J. Robinson, The decision problem for exponential Diophantine equations. Ann. Math. (2) 74, 425–436 (1961)

    Google Scholar 

  10. J. Demeyer, Recursively enumerable sets of polynomials over a finite field are Diophantine. Invent. Math. 170(3), 655–670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Denef, Hilbert’s 10th Problem for quadratic rings. Proc. AMS 48, 214–220 (1975)

    MathSciNet  MATH  Google Scholar 

  12. J. Denef, The diophantine problem for polynomial rings and fields of rational functions. Trans. AMS 242, 391–399 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Denef, Diophantine sets over algebraic integer rings II. Trans. AMS 257, 227–236 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Denef, The diophantine problem for polynomial rings of positive characteristic, in Logic Colloquium 78 (North Holland, Amsterdam, 1984), pp. 131–145

    Google Scholar 

  15. J. Denef, L. Lipshitz, Diophantine sets over some rings of algebraic integers. J. Lond. Math. Soc. 18, 385–391 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Denef, H. Schoutens, On the decidability of the existential theory of \(\mathbb{F}_{p}[[T]]\), in Valuation Theory and Its Applications 2. Fields Institute Communications, vol. 33, ed. by F.-V. Kuhlmann et al. (2003), pp. 43–60, AMS

    Google Scholar 

  17. J. Denef, L. Lipshitz, T. Pheidas, J. Van Geel, Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry. Contemporary Mathematics, vol. 270 (American Mathematical Society, Providence, 2000)

    Google Scholar 

  18. J.-L. Duret, Sur la théorie élémentaire des corps de fonctions. J. Symb. Log. 51(4), 948–956

    Google Scholar 

  19. K. Eisenträger, Hilbert’s 10th Problem for algebraic function fields of characteristic 2. Pac. J. Math. 210(2), 261–281 (2003)

    Article  MATH  Google Scholar 

  20. K. Eisenträger, A. Shlapentokh, Undecidability in function fields of positive characteristic. Int. Math. Res. Not. 2009, 4051–4086 (2009)

    MATH  Google Scholar 

  21. A.J. Engler, A. Prestel, Valued Fields (Springer, Berlin, 2005)

    MATH  Google Scholar 

  22. G. Faltings, Diophantine approximation on abelian varieties. Ann. Math. 133, 549–576 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Fried, D. Haran, H. Völklein, Real hilbertianity and the field of totally real numbers. Contemp. Math. 74, 1–34 (1994)

    Article  Google Scholar 

  24. M. Fried, M. Jarden, Field Arithmetic (Springer, Berlin, 1986) [3rd edn., 2008]

    Book  MATH  Google Scholar 

  25. K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. Monatsh. Math. Phys. 38, 173–198 (1931)

    Article  MathSciNet  Google Scholar 

  26. B. Green, F. Pop, P. Roquette, On Rumely’s local-global principle. Jber. Dt. Math.-Verein. 97, 43–74 (1995)

    MathSciNet  MATH  Google Scholar 

  27. D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker Kongress zu Paris 1900. Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. Kl. 3, 253–297 (1900)

    Google Scholar 

  28. M. Hindry, J.H. Silverman, Diophantine Geometry. Graduate Texts in Mathematics 201 (Springer, Berlin, 2000)

    Google Scholar 

  29. J. Kirby, A. Macintyre, A. Onshuus, The algebraic numbers definable in various exponential fields. J. Inst. Math. Jussieu 11(04), 825–834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Koenigsmann, Defining \(\mathbb{Z}\) in \(\mathbb{Q}\). Ann. Math. arXiv:1011.3424v1 (2010, to appear)

    Google Scholar 

  31. K.H. Kim, F.W. Roush, Diophantine undecidability of \(\mathbb{C}(t_{1},t_{2})\). J. Algebra 150(1), 35–44

    Google Scholar 

  32. L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. J. Reine Angew. Math. 53, 173–175 (1857)

    Article  MATH  Google Scholar 

  33. M. Laczkovich, The removal of \(\pi\) from some undecidable problems involving elementary functions. Proc. AMS 131(7), 2235–2240 (2002)

    Article  MathSciNet  Google Scholar 

  34. L. Lipshitz, The diophantine problem for addition and divisibility. Trans. AMS 235, 271–283 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Macintyre, The impact of Gödel’s incompleteness theorems on mathematics, in Kurt Gödel, ed. by M. Baaz et al. (Cambridge University Press, Cambridge, 2011), pp. 3–25

    Chapter  Google Scholar 

  36. A. Macintyre, A. Wilkie, On the decidability of the real exponential field, in Kreiseliana, ed. by P. Odifreddi (A.K. Peters, Wellesley, 1996), pp. 441–467

    Google Scholar 

  37. Y.V. Matiyasevich, Diofantovost’ perechislimykh mnozhestv. Dokl. AN SSSR 191(2), 278–282 (1970) (Translated in: Soviet Math. Doklady 11(2), 354–358, 1970)

    Google Scholar 

  38. Y.V. Matiyasevich, Prostye chisla perechislyayutsya polinomom ot 10peremennykh. J. Sov. Math. 15(19), 33–44 (1981) (translated)

    Google Scholar 

  39. Y.V. Matiyasevich, Hilbert’s 10th Problem: what was done and what is to be done, inHilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry. Contemporary Mathematics, vol. 270 (American Mathematical Society, Providence, 2000), pp. 1–47

    Google Scholar 

  40. B. Mazur, Questions of decidability and undecidability in number theory. J. Symb. Log. 59(2), 353–371 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Mazur, Open problems regarding rational points on curves and varieties, in Galois Representations in Arithmetic Algebraic Geometry, ed. by A.J. Scholl, R.L. Taylor (Cambridge University Press, Cambridge, 1998), pp. 239–266

    Chapter  Google Scholar 

  42. B. Mazur, K. Rubin Ranks of twists of elliptic curves and Hilbert’s tenth problem. Invent. Math. 181(3), 541–575 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. L. Moret-Bailly, Groupes de Picard et problèmes de Skolem I and II. Ann. Scien. Ec. Norm. Sup. 22(2), 161–179; 181–194 (1989)

    Google Scholar 

  44. O.T. O’Meara, Introduction to Quadratic Forms (Springer, Berlin, 1973)

    Book  MATH  Google Scholar 

  45. J. Park, A universal first order formula defining the ring of integers in a number field (2012). arXiv:1202.6371v1

    Google Scholar 

  46. H. Pasten, Powerful values of polynomials and a conjecture of Vojta. J. Number Theory 133(9), 2843–3206 (2013)

    Article  MathSciNet  Google Scholar 

  47. T. Pheidas, Hilbert’s tenth problem for a class of rings of algebraic integers. Proc. AMS 104, 611–620 (1988)

    MathSciNet  MATH  Google Scholar 

  48. T. Pheidas, Hilbert’s 10th Problem for fields of rational functions over finite fields. Invent. Math. 103, 1–8 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Pheidas, Extensions of Hilbert’s 10th Problem. J. Symb. Log. 59(2), 372–397 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Pheidas, Endomorphisms of elliptic curves and undecidability in function fields of positive characteristic. J. Algebra 273(1), 395–411 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. T. Pheidas, K. Zahidi, Undecidability of existential theories of rings and fields: a survey, in Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry. Contemporary Mathematics, vol. 270 (American Mathematical Society, Providence, 2000), pp. 49–105

    Google Scholar 

  52. B. Poonen, Using elliptic curves of rank one towards the undecidability of Hilbert’s 10th Problem over rings of algebraic integers, in Algorithmic Number Theory, ed. by C. Fieker, D.R. Kohel (Springer, Berlin, 2002), pp. 33–42

    Chapter  Google Scholar 

  53. B. Poonen, Hilbert’s 10th problem over rings of number-theoretic interest (2003). www-math.mit.edu/ poonen/papers/aws2003.pdf

    Google Scholar 

  54. B. Poonen, Undecidability in number theory. Not. AMS 55(3), 344–350 (2008)

    MathSciNet  MATH  Google Scholar 

  55. B. Poonen, Characterizing integers among rational numbers with a universal-existential formula. Am. J. Math. 131(3), 675–682 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. B. Poonen, The set of nonsquares in a number field is diophantine. Math. Res. Lett. 16(1), 165–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. F. Pop, Embedding problems over large fields. Ann. Math. (2) 144(1), 1–34 (1996)

    Google Scholar 

  58. A. Prestel, Pseudo real closed fields, in Set Theory and Model Theory, ed. by R.B. Jensen, A. Prestel. Springer Lecture Notes, vol. 872 (1981), pp. 127–156, Springer, Berlin

    Google Scholar 

  59. A. Prestel, P. Roquette, Formally p-Adic Fields. Springer Lecture Notes, vol. 1050 (1984), Springer, Berlin

    Google Scholar 

  60. A. Prestel, J. Schmid, Existentially closed domains with radical relations. J. Reine Angew. Math. 407, 178–201 (1990)

    MathSciNet  MATH  Google Scholar 

  61. J. Robinson, Definability and decision problems in arithmetic. J. Symb. Log. 14(2), 98–114 (1949)

    Article  MATH  Google Scholar 

  62. J. Robinson, Existential definability in arithmetic. Trans. AMS 72, 437–449 (1952)

    Article  MATH  Google Scholar 

  63. J. Robinson, The undecidability of algebraic rings and fields. Proc. AMS 10, 950–957 (1959)

    Article  MATH  Google Scholar 

  64. J. Robinson, On the decision problem for algebraic rings, in Studies in Mathematical Analysis and Related Topics, ed. by G. Szegö (Stanford University Press, Stanford, 1962), pp. 297–304

    Google Scholar 

  65. R.M. Robinson, Undecidable rings. Trans. AMS 70(1), 137–159 (1951)

    Article  MATH  Google Scholar 

  66. L.A. Rubel, An essay on diophantine equations for analytic functions. Exp. Math 13, 81–92 (1995)

    MathSciNet  MATH  Google Scholar 

  67. R. Rumely, Arithmetic over the ring of all algebraic integers. J. Reine Angew. Math. 368(5), 127–133 (1986)

    MathSciNet  MATH  Google Scholar 

  68. E.S. Selmer, The diophantine equation \(ax^{3} + by^{3} + cz^{3} = 0\). Acta Math. 85, 203–362 (1951) and 92, 191–197 (1954)

    Google Scholar 

  69. J.-P. Serre, A Course in Arithmetic (Springer, Berlin, 1973)

    Book  MATH  Google Scholar 

  70. A. Shlapentokh, Hilbert’s 10th Problem for rings of algebraic functions in one variable over fields of constants of positive characteristic. Trans. AMS 333, 275–298 (1992)

    MathSciNet  MATH  Google Scholar 

  71. A. Shlapentokh, Hilbert’s 10th problem over number fields, a survey, in Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry. Contemporary Mathematics, vol. 270 (American Mathematical Society, Providence, 2000), pp. 107–137

    Google Scholar 

  72. A. Shlapentokh, Hilbert’s Tenth Problem, Diophantine Classes and Extensions to Global Fields (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  73. A. Shlapentokh, H.N. Shapiro, Diophantine relationships between algebraic number fields. Comm. Pure Appl. Math. 42, 1113–1122 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  74. J.H. Silverman, The Arithmetic of Elliptic Curves (Springer, Berlin, 1986)

    Book  MATH  Google Scholar 

  75. L. van den Dries, Elimination theory for the ring of algebraic integers. J. Reine Angew. Math. 388, 189–205 (1988)

    MathSciNet  MATH  Google Scholar 

  76. L. van den Dries, Lectures on the Model Theory of Valued Fields (Springer, Heidelberg, 2014) (this volume)

    Google Scholar 

  77. X. Videaux, An analogue of Hilbert’s 10th problem for fields of meropmorphic functions over non-Archimedean valued fields. J. Number Theory 101, 48–73 (2003)

    Article  MathSciNet  Google Scholar 

  78. C. Videla, Hilbert’s 10th Problem for rational function fields in characteristic 2. Proc. AMS 120(1), 249–253 (1994)

    MathSciNet  MATH  Google Scholar 

  79. C. Videla, On the constructible numbers. Proc. AMS 127(3), 851–860 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  80. C. Videla, Definability of the ring of integers in pro-p Galois extensions of number fields. Isr. J. Math. 118(1), 1–14 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Koenigsmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koenigsmann, J. (2014). Undecidability in Number Theory. In: Model Theory in Algebra, Analysis and Arithmetic. Lecture Notes in Mathematics(), vol 2111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54936-6_5

Download citation

Publish with us

Policies and ethics