Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 712 Accesses

Abstract

Tremendous effort has been devoted to understanding the mechanism of methylmercury (MeHg) bioaccumulation in the aquatic food webs in North America and Europe because fish consumption is generally believed to be the main exposure pathway of MeHg to humans. Hg bioaccumulation in terrestrial food chains have received little attention and assumed to be of minor importance. However, elevated concentrations of total mercury (THg) as well as MeHg in rice have been reported from Hg contaminated areas (e.g., MeHg reach 144 μg kg−1 (Horvat et al. 2003) and 174 μg kg−1 (Qiu et al. 2008)). In such contaminated areas, rice grains have been observed with high ratios of MeHg to THg (e.g., average as 45 % (Horvat et al. 2003)). Moreover, Feng et al. suggested that rice consumption is the major MeHg exposure pathway for a population in a Hg mining area in Guizhou, China (Feng et al. 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernaus A, Gaona X, Ivask A, Kahru A, Valiente M (2005) Analysis of sorption and bioavailability of different species of mercury on model soil components using XAS techniques and sensor bacteria. Anal Bioanal Chem 382(7):1541–1548

    Article  Google Scholar 

  • Bishop KH, Lee YH, Munthe J, Dambrine E (1998) Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry 40(2–3):101–113

    Article  Google Scholar 

  • Boszke L, Kowalski A, Astel A, Baranski A, Gworek B, Siepak J (2008) Mercury mobility and bioavailability in soil from contaminated area. Environ Geol 55(5):1075–1087

    Article  Google Scholar 

  • FAO (2006) (Food and Agriculture Organization of the United Nations). Rice is life. http://www.fao.org/newsroom/en/news/2006/1000267/index.html[accessed. Accessed 2013

  • Feng X, Li P, Qiu G, Wang S, Li G, Shang L, Meng B, Jiang H, Bai W, Li Z, Fu X (2008) Human exposure to methylmercury through rice intake in mercury mining areas, guizhou province, china. Environ Sci Technol 42(1):326–332

    Article  Google Scholar 

  • Gnamus A, Byrne AR, Horvat M (2000) Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ Sci Technol 34(16):3337–3345

    Article  Google Scholar 

  • Greger M, Wang YD, Neuschutz C (2005) Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environ Pollut 134(2):201–208

    Article  Google Scholar 

  • Gustin MS, Lindberg S, Marsik F, Casimir A, Ebinghaus R, Edwards G, Hubble-Fitzgerald C, Kemp R, Kock H, Leonard T, London J, Majewski M, Montecinos C, Owens J, Pilote M, Poissant L, Rasmussen P, Schaedlich F, Schneeberger D, Schroeder W, Sommar J, Turner R, Vette A, Wallschlaeger D, Xiao Z, Zhang H (1999) Nevada STORMS project: measurement of mercury emissions from naturally enriched surfaces. J Geophys Res-Atmos 104(D17):21831–21844

    Article  Google Scholar 

  • Horvat M, Nolde N, Fajon V, Jereb V, Logar M, Lojen S, Jacimovic R, Falnoga I, Liya Q, Faganeli J, Drobne D (2003) Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou. China Sci Total Environ 304(1–3):231–256

    Article  Google Scholar 

  • Krupp EM, Mestrot A, Wielgus J, Meharg AA, Feldmann J (2009) The molecular form of mercury in biota: identification of novel mercury peptide complexes in plants. Chem Commun 28:4257–4259

    Article  Google Scholar 

  • Lodenius A, Tulisalo E, Soltanpour-Gargari A (2003) Exchange of mercury between atmosphere and vegetation under contaminated conditions. Sci Total Environ 304(1–3):169–174

    Article  Google Scholar 

  • Lodenius M (1994) Mercury in terrestrial ecosystems: a review. In: Watras CJ, Huckabee JW (eds) Mercury pollution—integration and synthesis. Lewis Publishers, Boca Raton, p 343

    Google Scholar 

  • MEPC (1995) (Ministry of Environmental Protection of the People’s Republic of China). Environmental quality standard for soils (in Chinese); GB15618–1995, pp 1–6

    Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422

    Article  Google Scholar 

  • Qiu GL, Feng XB, Li P, Wang SF, Li GH, Shang LH, Fu XW (2008) Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China. J Agric Food Chem 56(7):2465–2468

    Article  Google Scholar 

  • Qiu GL, Feng XB, Wang SF, Shang LH (2005) Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Appl Geochem 20(3):627–638

    Article  Google Scholar 

  • Rasmussen LD, Sorensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32(5):639–646

    Article  Google Scholar 

  • Reis AT, Rodrigues SM, Araujo C, Coelho JP, Pereira E, Duarte AC (2009) Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Sci Total Environ 407(8):2689–2700

    Article  Google Scholar 

  • SAC (2005) (Standardization Administration of the People’s Republic of China). Maximum levels of contaminants in Foods (in Chinese); GB 2762–2005, pp 171–173

    Google Scholar 

  • Schwesig D, Krebs O (2003) The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem. Plant Soil 253(2):445–455

    Article  Google Scholar 

  • Senesi GS, Baldassarre G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39(2):343–377

    Article  Google Scholar 

  • Shi JB, Liang LN, Jiang GB (2005) Simultaneous determination of methylmercury and ethylmercury in rice by capillary gas chromatography coupled on-line with atomic fluorescence spectrometry. J AOAC Int 88(2):665–669

    Google Scholar 

  • Stein ED, Cohen Y, Winer AM (1996) Environmental distribution and transformation of mercury compounds. Crit Rev Environ Sci Technol 26(1):1–43

    Article  Google Scholar 

  • Stubner S, Wind T, Conrad R (1998) Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Syst Appl Microbiol 21(4):569–578

    Article  Google Scholar 

  • Tiffreau C, Lutzenkirchen J, Behra P (1995) Modeling the adsorption of mercury (II) on (HYDR) oxides.1. Amorphous iron-oxide and alpha-quartz. J Colloid Interface Sci 172(1):82–93

    Article  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293

    Article  Google Scholar 

  • Valega M, Lima AIG, Figueira E, Pereira E, Pardal MA, Duarte AC (2009) Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure. Chemosphere 74(4):530–536

    Article  Google Scholar 

  • Wang SF, Feng XB, Qiu GL, Fu XW, Wei ZQ (2007) Characteristics of mercury exchange flux between soil and air in the heavily air-polluted area, eastern Guizhou, China. Atmos Environ 41(27):5584–5594

    Article  Google Scholar 

  • Wind T, Conrad R (1995) Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbiol Ecol 18(4):257–266

    Article  Google Scholar 

  • Zhang H, Feng X, Larssen T, Shang L, Li P (2010) Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain.  Environ Sci Technol 44(12):4499–4504

    Google Scholar 

  • Zhu C, Shen GM, Yan YP, He JY (2008) Genotypic variation in grain mercury accumulation of lowland rice. J Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 171(2):281–285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, H. (2014). Biogeochemical Cycles of Mercury in Soil-Rice System. In: Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54919-9_8

Download citation

Publish with us

Policies and ethics