Skip to main content

Advances in Research on the Mechanisms of Selenium–Mercury Interactions and Health Risk Assessment

  • Chapter
  • First Online:
Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A large number of scientific studies have confirmed that interactions between selenium (Se) and mercury (Hg) are a very important topic of study for the systematic understanding of the environmental behavior, fate and toxicological effects of Hg (or Se). In addition, related research involves geology, medicine and many sectors in other disciplines. Research results concerning the interaction characteristics, rules and mechanisms of these two elements in many media, such as water, soils and organisms, are spread out over many segments of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afton SE, Caruso JA (2009) The effect of Se antagonism on the metabolic fate of Hg in Allium fistulosum. J Anal At Spectrom 24(6):759–766

    Article  Google Scholar 

  • Arnold AP, Canty AJ, Skelton BW, White AH (1982) Mercury(II) selenolates. Crystal structures of polymeric Hg(SeMe)2 and the tetrameric pyridinates [[HgCl(py)(SeEt)}4] and [(HgCl(Py)05[Se(CMe3)] J4]. J Chem Soc Dalton Trans 3:607–613

    Article  Google Scholar 

  • Arnold AP, Tan KS, Rabenstein DL (1986) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 23. Complexation of methylmercury by selenohydryl-containing amino acids and related molecules. Inorg Chem 25(14):2433–2437

    Article  Google Scholar 

  • Bao Z (1975) Discovery of Tiemannite and its prospecting significance. Geol Explor 11(1):35–37

    Google Scholar 

  • Bao Z, Bao J (1995) Occurrence characteristics of selenium from mercury Belt in Western Hunan-Eastern Guizhou. Non-ferrous Min Explor 4(1):30–34

    Google Scholar 

  • Baughman GL, Gordon JA, Wolfe NL, Zepp PG (1973) Chemistry of organomercurials in aquatic systems. EPA-660/3-73-012. National Environmental Research Center, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis

    Google Scholar 

  • Belzile N, Chen Y-W, Yang D-Y, Truong H-YT, Zhao Q-X (2009) Selenium bioaccumulation in freshwater organisms and antagonistic effect against mercury assimilation. Environ Bioindic 4(3):203–221

    Article  Google Scholar 

  • Belzile N, Chen YW, Gunn JM, Tong J, Alarie Y, Delonchamp T, Lang CY (2006a) The effect of selenium on mercury assimilation by freshwater organisms. Can J Fish Aquat Sci 63(1):1–10

    Article  Google Scholar 

  • Belzile N, Wu GJ, Chen YW, Appanna VD (2006b) Detoxification of selenite and mercury by reduction and mutual protection in the assimilation of both elements by Pseudomonas fluorescens. Sci Total Environ 367(2–3):704–714

    Article  Google Scholar 

  • Berlin M (1978) Interaction between selenium and inorganic mercury. Environ Health Perspect 25:67–69

    Google Scholar 

  • Beyrouty P, Chan HM (2006) Co-consumption of selenium and vitamin E altered the reproductive and developmental toxicity of methylmercury in rats. Neurotoxicol Teratol 28(1):49–58

    Article  Google Scholar 

  • Björnberg A, Håkanson L, Lundbergh K (1988) A theory on the mechanisms regulating the bioavailability of mercury in natural waters. Environ Pollut 49(1):53–61

    Article  Google Scholar 

  • Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204(3):274–308

    Article  Google Scholar 

  • Brockman JD, Raymond LJ, Ralston CR, Robertson JD, Bodkin N, Sharp N, Ralston NVC (2011) The nail as a noninvasive indicator of methylmercury exposures and mercury/selenium molar ratios in brain, kidney, and livers of long-evans rats. Biol Trace Elem Res 144(1–3):812–820

    Article  Google Scholar 

  • Burk RF, Foster KA, Greenfie PM, Kiker KW (1974a) Binding of simultaneously administered inorganic selenium and mercury to a rat plasma-protein. Proc Soc Exp Biol Med 145(3):782–785

    Google Scholar 

  • Burk RF, Foster KA, Greenfield PMK, Krker KW (1974b) Binding of simultaneously administered inorganic selenium and mercury to rat plasmaprotein. Proc Soc Exp Biol Med 145:782–785

    Google Scholar 

  • Carty AJ, Malone SF (1979) The chemistry of mercury in biological system. In: Nriagu JO (ed) The biogeochemistry of mercury in the envionment. North-Holland Biomedical Press, Amsterdam, pp 433–479

    Google Scholar 

  • Chen CY, Yu HW, Zhao JJ, Li B, Qu LY, Liu SP, Zhang PQ, Chai ZF (2006) The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect 114(2):297–301

    Article  Google Scholar 

  • Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86(1):1–12

    Article  Google Scholar 

  • Chen RW, Whanger PD, Fang SC (1974) Diversion of mercury binding in rat tissues by selenium-possible mechanism of protection. Pharmacol Res Commun 6(6):571–579

    Article  Google Scholar 

  • Chen YW, Belzile N, Gunn JM (2001) Antagonistic effect of selenium on mercury assimilation by fish populations near Sudbury metal smelters? Limnol Oceanogr 46(7):1814–1818

    Article  Google Scholar 

  • Chmielnicka J, Komstaszumska E, Jedrychowski R (1979) Organ and subcellular distribution of mercury in rats as dependent on the time of exposure to sodium selenite. Environ Res 20(1):80–86

    Article  Google Scholar 

  • Craig PJ, Moreton PA (1984) The role of sulfide in the formation of dimethylmercury in river and estuary sediments. Mar Pollut Bull 15(11):406–408

    Article  Google Scholar 

  • Crump KS, Kjellstrom T, Shipp AM, Silvers A, Stewart A (1998) Influence of prenatal mercury exposure upon scholastic and psychological test performance: Benchmark analysis of a New Zealand cohort. Risk Anal 18(6):701–713

    Article  Google Scholar 

  • Cuvinaralar MLA, Furness RW (1991) Mercury and selenium interaction-a review. Ecotoxicol Environ Saf 21(3):348–364

    Article  Google Scholar 

  • Dyrssen D, Wedborg M (1991) The sulfur-mercury system in natural waters. Water Air Soil Pollut 56:507–519

    Article  Google Scholar 

  • Ekstrom EB, Morel FMM, Benoit JM (2003) Mercury methylation independent of the acetyl-coenzyme a pathway in sulfate-reducing bacteria. Appl Environ Microbiol 69(9):5414–5422

    Article  Google Scholar 

  • Falnoga I, Tusek-Znidaric M (2007) Selenium-mercury interactions in man and animals. Biol Trace Elem Res 119(3):212–220

    Article  Google Scholar 

  • Fang SC (1974) Induction of carbon-mercury cleavage enzymes in rat liver by dietary selenite. Res Comm Chem Pathol Pharmacol 9:579–582

    Google Scholar 

  • Fredriksson A, Gardlund AT, Bergman K, Oskarsson A, Ohlin B, Danielsson B, Archer T (1993) Effects of maternal dietary supplemention with selenite on the postnatal-development of rat offspring exposed to methylmercury in utero. Pharmacol Toxicol 72(6):377–382

    Article  Google Scholar 

  • Gailer J (2007) Arsenic-selenium and mercury-selenium bonds in biology. Coord Chem Rev 251(1–2):234–254

    Article  Google Scholar 

  • Ganther HE (1978) Modification of methyl mercury toxicity and metabolism by selenium and vitamin E: possible mechanisms. Environ Health Perspect 25:71–76

    Article  Google Scholar 

  • Ganther HE, Goudie C, Wagner P, Sunde ML, Kopecky MJ, Oh SH, Hoekstra WG (1972) Selenium relation to decreased toxicity of methylmercury added to diets containing tuna. Science 175(4026):1122–1124

    Article  Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N, Dahl R, Jorgensen PJ (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19(6):417–428

    Article  Google Scholar 

  • Groth E (2010) Ranking the contributions of commercial fish and shellfish varieties to mercury exposure in the United States: implications for risk communication. Environ Res 110(3):226–236

    Article  Google Scholar 

  • Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301(5637):1203

    Google Scholar 

  • Hockin SL, Gadd GM (2003) Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol 69(12):7063–7072

    Article  Google Scholar 

  • Ikemoto T, Kunito T, Tanaka H, Baba N, Miyazaki N, Tanabe S (2004) Detoxification mechanism of heavy metals in marine mammals and seabirds: interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver. Arch Environ Contam Toxicol 47(3):402–413

    Article  Google Scholar 

  • Jin LJ, Guo P, Xu XQ (1997) Effect of selenium on mercury methylation in anaerobic lake sediments. Bull Environ Contam Toxicol 59(6):994–999

    Article  Google Scholar 

  • Jin LJ, Guo P, Xu XQ (1999) Effect of selenium on mercury methylation in facultative lake sediments. Toxicol Environ Chem 69(1):255–261

    Article  Google Scholar 

  • Kaneko JJ, Ralston NC (2007) Selenium and mercury in pelagic fish in the Central North Pacific near Hawaii. Biol Trace Elem Res 119(3):242–254

    Article  Google Scholar 

  • Khan MAK, Asaduzzaman AM, Schreckenbach G, Wang F (2009) Synthesis, characterization and structures of methylmercury complexes with selenoamino acids. Dalton Trans 29:5766–5772

    Article  Google Scholar 

  • Khan MAK, Wang FY (2009) Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem 28(8):1567–1577

    Article  Google Scholar 

  • Klimstra JD, Yee JL, Heinz GH, Hoffman DJ, Stebbins KR (2012) Interactions between methylmercury and selenomethionine injected into mallard eggs. Environ Toxicol Chem 31(3):579–584

    Article  Google Scholar 

  • Koeman JH, Peeters WHM, Koudstaa CH, Tjioe PS, Goeij J (1973) mercury-selenium correlations in marine mammals. Nature 245(5425):385–386

    Google Scholar 

  • Koeman JH, Van de Ven WSM, de Goeij JJM, Tijoe PS, Van Haaften JL (1975) Mercury and selenium in marine mammals and birds. Sci Total Environ 3:279–287

    Google Scholar 

  • Kosta L, Byrne AR, Zelenko V (1975) Correlation between selenium and mercury in man following exposure to inorganic mercury. Nature 254(5497):238–239

    Article  Google Scholar 

  • Kyriakopoulos A, Behne D (2002) Selenium-containing proteins in mammals and other forms of life. Rev Physiol Biochem Pharmacol 145:1–46

    Article  Google Scholar 

  • Lederman SA, Jones RL, Caldwell KL, Rauh V, Sheets SE, Tang D, Viswanathan S, Becker M, Stein JL, Wang RY, Perera FA (2008) Relation between cord blood mercury levels and early child development in a World Trade Center cohort. Environ Health Perspect 116(8):1085–1091

    Article  Google Scholar 

  • Lemes M, Wang FY (2009) Methylmercury speciation in fish muscle by HPLC-ICP-MS following enzymatic hydrolysis. J Anal At Spectrom 24(5):663–668

    Article  Google Scholar 

  • Li Y-F, Dong Z, Chen C, Li B, Gao Y, Qu L, Wang T, Fu X, Zhao Y, Chai Z (2012) Organic Selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan. China Environ Sci Technol 46(20):11313–11318

    Article  Google Scholar 

  • Lockhart WL, Stern GA, Wagemann R, Hunt RV, Metner DA, DeLaronde J, Dunn B, Stewart REA, Hyatt CK, Harwood L, Mount K (2005) Concentrations of mercury in tissues of beluga whales (Delphinapterus leucas) from several communities in the Canadian Arctic from 1981 to 2002. Sci Total Environ 351:391–412

    Article  Google Scholar 

  • Møller-Madsen B, Danscher G (1991) Localization of mercury in CNS of the rat. IV. The effect of selenium on orally administered organic and inorganic mercury. Toxicol Appl Pharmacol 108(3):457–473

    Article  Google Scholar 

  • Magos L, Bakir F, Clarkson TW, Aljawad AM, Alsoffi MH (1976) Tissue levels of mercury in autopsy specimens of liver and kidney. Bull World Health Organ 53:93–97

    Google Scholar 

  • McNeal JM, Balistrieri LS (1989) Geochemistry and occurrence of selenium: an overview. In: Jacobs LW (ed) Selenium in agriculture and the environment. Soil science society of America and American Society of Agronomy, Madison, pp 1–13

    Google Scholar 

  • McNear DH, Afton SE, Caruso JA (2012) Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Metallomics 4(3):267–276

    Article  Google Scholar 

  • Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3–11

    Article  Google Scholar 

  • Mounicou S, Shah M, Meija J, Caruso JA, Vonderheide AP, Shann J (2006a) Localization and speciation of selenium and mercury in Brassica juncea—implications for Se-Hg antagonism. J Anal At Spectrom 21(4):404–412

    Article  Google Scholar 

  • Mounicou S, Vonderheide AP, Shann JR, Caruso JA (2006b) Comparing a selenium accumulator plant (Brassica juncea) to a nonaccumulator plant (Helianthus annuus) to investigate selenium-containing proteins. Anal Bioanal Chem 386(5):1367–1378

    Article  Google Scholar 

  • Myers GJ, Davidson PW (1998) Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research. Environ Health Perspect 106:841–847

    Article  Google Scholar 

  • Myers GJ, Davidson PW, Cox C, Shamlaye C, Cernichiari E, Clarkson TW (2000) Twenty-seven years studying the human neurotoxicity of methylmercury exposure. Environ Res 83(3):275–285

    Article  Google Scholar 

  • Naganuma A, Ishii Y, Imura N (1984) Effect of administration sequence of mercuric chloride and sodium selenite on their fates and toxicities in mice. Ecotoxicol Environ Saf 8(6):572–580

    Google Scholar 

  • Newland MC, Reed MN, LeBlanc A, Donlin WD (2006) Brain and blood mercury and selenium after chronic and developmental exposure to methylmercury. Neurotoxicology 27(5):710–720

    Article  Google Scholar 

  • Nigro M, Leonzio C (1996) Intracellular storage of mercury and selenium in different marine vertebrates. Mar Ecol Prog Ser 135(1–3):137–143

    Article  Google Scholar 

  • Nishikido N, Furuyashiki K, Naganuma A, Suzuki T, Imura N (1987) Maternal selenium deficiency enhances the fetolethal toxicity of methyl mercury. Toxicol Appl Pharmacol 88(3):322–328

    Article  Google Scholar 

  • Oken E, Osterdal ML, Gillman MW, Knudsen VK, Halldorsson TI, Strom M, Bellinger DC, Hadders-Algra M, Michaelsen KF, Olsen SF (2008) Associations of maternal fish intake during pregnancy and breastfeeding duration with attainment of developmental milestones in early childhood: a study from the Danish National Birth cohort. Am J Clin Nutr 88(3):789–796

    Google Scholar 

  • Pařízek J, Ošťádalová I (1967) The protective effect of small amounts of selenite in sublimate intoxication. Cell Mol Life Sci 23(2):142–143

    Article  Google Scholar 

  • Parizek J, Ostadalo I (1967) Protective effect of small amounts of selenite in sublimate intoxication. Experientia 23(2):142–143

    Article  Google Scholar 

  • Paulsson K, Lundbergh K (1989) The selenium method for treatment of lakes for elevated levels of mercury in fish. Sci Total Environ 87–8:495–507

    Article  Google Scholar 

  • Pelletier E (1986) Mercury-selenium interactions in aquatic organisms: a review. Mar Environ Res 18(2):111–132

    Article  Google Scholar 

  • Peterson SA, Ralston NVC, Peck DV, Van Sickle J, Robertson JD, Spate VL, Morris JS (2009a) How might selenium moderate the toxic effects of mercury in stream fish of the Western US? Environ Sci Technol 43(10):3919–3925

    Article  Google Scholar 

  • Peterson SA, Ralston NVC, Whanger PD, Oldfield JE, Mosher WD (2009b) Selenium and mercury interactions with emphasis on fish tissue. Environ Bioindic 4(4):318–334

    Article  Google Scholar 

  • Rabenstein DL (1978) The chemistry of methylmercury toxicology. J Chem Educ 55(5):292–296

    Article  Google Scholar 

  • Rabenstein DL, Isab AA, Reid RS (1982) A proton nuclear magnetic resonance study of the binding of methylmercury in human erythrocytes. Biochim Biophys Acta 720(1):53–64

    Article  Google Scholar 

  • Rabenstein DL, Reid RS (1984) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 20. Ligand-exchange kinetics of methylmercury(II)-thiol complexes. Inorg Chem 23(9):1246–1250

    Article  Google Scholar 

  • Ralston NVC (2008) Selenium health benefit values as seafood safety criteria. EcoHealth 5(4):442–455

    Article  Google Scholar 

  • Ralston NVC, Blackwell JL III, Raymond LJ (2007) Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biol Trace Elem Res 119(3):255–268

    Article  Google Scholar 

  • Ralston NVC, Ralston CR, Blackwell JL, Raymond LJ (2008) Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology 29(5):802–811

    Article  Google Scholar 

  • Ralston NVC, Raymond LJ (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278(1):112–123

    Article  Google Scholar 

  • Ralston NVC, Raymond LJ (2013) Selenium status and intake influences mercury exposure risk in selenium in the environment and human health. In: Banuelos, Lin, Yin (eds) CRC Press, Atlanta, pp 203–205

    Google Scholar 

  • Rawson AJ, Bradley JP, Teetsov A, Rice SB, Haller EM, Patton GW (1995) A role for airborne particulates in high mercury levels of some cetaceans. Ecotoxicol Environ Saf 30:309–314

    Article  Google Scholar 

  • Raymond L, Seale L, Ralston NC (2012) Seafood selenium in relation to assessments of methylmercury exposure risks. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium. Springer, New York. pp 399–408

    Google Scholar 

  • Raymond LJ, Ralston NVC (2009) Selenium’s importance in regulatory issues regarding mercury. Fuel Process Technol 90(11):1333–1338

    Article  Google Scholar 

  • Reid RS, Rabenstein DL (1981) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. XVII. Formation constants for the complexation of methylmercury by sulfhydryl-containing amino acids and related molecules. Can J Chem-Rev Canadienne De Chimie 59(10):1505–1514

    Google Scholar 

  • Schantz MM, Koster BJ, Wise SA, Becker PR (1993) Determination of PCBs and chlorinated hydrocarbons in marine mammal tissues. Sci Total Environ 139–140:323–345

    Article  Google Scholar 

  • Shanker K, Mishra S, Srivastava S, Srivastava R, Daas S, Prakash S, Srivastava MM (1996a) Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (Lycopersicum esculentum). Plant Soil 183(2):233–238

    Article  Google Scholar 

  • Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996b) Study of mercury-selenium (Hg-Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food Chem Toxicol 34(9):883–886

    Article  Google Scholar 

  • Skerfving S (1978) Interaction between selenium and methylmercury. Enviro Health Perspect 25:57–65

    Google Scholar 

  • Southworth GR, Peterson MJ, Ryon MG (2000) Long-term increased bioaccumulation of mercury in largemouth bass follows reduction of waterborne selenium. Chemosphere 41(7):1101–1105

    Article  Google Scholar 

  • Tan JA (1989) The atlas of endemic diseases and their environments in the People’s Republic of China. Science Press, Beijing

    Google Scholar 

  • Taylor D, Dalton C, Hall A, Woodroofe MN, Gardiner PHE (2009) Recent developments in selenium research. Br J Biomed Sci 66(2):107–116

    Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Criti Rev Environ Sci Technol 31(3):241–293

    Article  Google Scholar 

  • Watanabe C, Yin K, Kasanuma Y, Satoh H (1999) In utero exposure to methylmercury and Se deficiency converge on the neurobehavioral outcome in mice. Neurotoxicol Teratol 21(1):83–88

    Article  Google Scholar 

  • Whanger PD (2001) Selenium and the brain: a review. Nutr Neurosci 4(2):81–97

    Google Scholar 

  • Yang DY, Chen YW, Gunn JM, Belzile N (2008) Selenium and mercury in organisms: interactions and mechanisms. Environ Rev 16:71–92

    Article  Google Scholar 

  • Yathavakilla SKV, Caruso JA (2007) A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC-ICPMS. Anal Bioanal Chem 389(3):715–723

    Article  Google Scholar 

  • Yoneda S, Suzuki KT (1997) Equimolar Hg-Se complex binds to selenoprotein P. Biochem Biophys Res Commun 231(1):7–11

    Article  Google Scholar 

  • Zhang H, Feng X, Larssen T, Qiu G, Vogt RD (2010) In Inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ Health Perspect 118(9):1183–1188

    Article  Google Scholar 

  • Zhang H, Feng XB, Chan HM, Larssen T (2014) New insights into traditional health risk assessments of mercury exposure: implications of selenium. Environ Sci Technol 48(2):1206–1212

    Article  Google Scholar 

  • Zhao J, Gao Y, Li Y-F, Hu Y, Peng X, Dong Y, Li B, Chen C, Chai Z (2013a) Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environ Res 125:75–81

    Article  Google Scholar 

  • Zhao J, Hu Y, Gao Y, Li Y, Li B, Dong Y, Chai Z (2013b) Mercury modulates selenium activity via altering its accumulation and speciation in garlic (Allium sativum). Metallomics 5(7):896–903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, H. (2014). Advances in Research on the Mechanisms of Selenium–Mercury Interactions and Health Risk Assessment. In: Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54919-9_2

Download citation

Publish with us

Policies and ethics