Skip to main content

Microwave Imaging

  • Chapter
  • First Online:

Abstract

Microwaves are electromagnetic waves ranging from approximately 1–300 GHz in frequency; older classifications and standards include lower frequencies up to 300 MHz including UHF and EHF (millimetric waves).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad A (2005) Wireless and mobile data Networks. Wiley, New York

    Book  Google Scholar 

  • Benedetti M, Donelli M, Lesselier D, Massa A (2007a) A two-step inverse scattering procedure for the qualitative imaging of homogeneous cracks in known host media—preliminary results. IEEE Antennas Wirel Propag Lett 6:623–626

    Article  Google Scholar 

  • Benedetti M, Donelli M, Massa A (2007b) Multicrack detection in two dimensional structures by means of GA-based strategies. IEEE Trans Antennas Propag 55(1):205–215

    Article  Google Scholar 

  • Benedetti M, Donelli M, Martini A, Pastorino M, Rosani A, Massa A (2006) An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection. IEEE Trans Instrum Meas 55(6):1878–1884

    Article  Google Scholar 

  • Benedetti M, Donelli M, Franceschini G, Pastorino M, Massa A (2005) Effective exploitation of the a priori information through a microwave imaging procedure based on the SMW for NDE/NDT applications. IEEE Trans Geosci Remote Sens 43(11):2584–2592

    Article  Google Scholar 

  • Bengtsson NE, Ohisson T (1974) Microwave heating in the food industry. Proc IEEE 62(1):44–55

    Article  Google Scholar 

  • Bensky A (2004) Short-range wireless communication, fundamentals of RF system design and application. Elsevier, New York

    Google Scholar 

  • Bolomey JC, Gardiol G (2001) Engineering applications of the modulated scattering technique, Artech House, London

    Google Scholar 

  • Bolomey JC, Capdevila S, Jofre L, Tedjini S (2011) Sensitivity analysis for wireless dielectric reflectometry with modulated scatterers. In: Proceedings of 15th international symposium on antenna technology application of electromagnetic Canadian radio science meeting ANTEM/URSI, pp 1–4

    Google Scholar 

  • Bolomey JC (1995) Frontiers in industrial process tomography. Engineering Foundation, NC

    Google Scholar 

  • Bolomey JC (1996) Some aspects related to the transfer of microwave sensing technology. Proc Mat Res Soc Symp 430:53–58

    Article  Google Scholar 

  • Bolomey JC, Joachimowicz N (1994) Dielectric metrology via microwave tomography: present and future. Proc Mat Res Soc Symp 347:259–268

    Article  Google Scholar 

  • Bort E, Donelli M, Martini A, Massa A (2005) An adaptive weighting strategy for microwave imaging problems. IEEE Trans Antennas Propag Lett 53(5):1858–1862

    Article  Google Scholar 

  • Caorsi S, Massa A, Pastorino M, Donelli M (2004a) Improved microwave imaging procedure for non-destructive evaluations of two-dimensional structures. IEEE Trans Antennas Propag 52(6):1386–1397

    Article  Google Scholar 

  • Caorsi S, Donelli M, Massa A (2004b) Analysis of the stability and robustness of the iterative multi-scaling approach for microwave imaging applications. Radio Sci 39(5):RS5008

    Article  Google Scholar 

  • Caorsi S, Donelli M, Franceschini D, Massa A (2003) A new methodology based on an iterative multi-scaling for microwave imaging. IEEE Trans Microw Theory Tech 51(4):1162–1173

    Article  Google Scholar 

  • Caorsi S, Donelli M, Lommi A, Massa A (2004c) Location and imaging of two-dimensional scatterers by using a Particle Swarm algorithm. J Electromagnet Waves Appl 18(4):481–494

    Article  MathSciNet  Google Scholar 

  • Caorsi S, Donelli M, Franceschini D, Massa A (2002) An iterative multiresolution approach for microwave imaging applications. Microw Opt Tech Lett 32(5):352–356

    Article  Google Scholar 

  • Choi JH, Moon JI, Park SO (2004) Measurement of the modulated scattering microwave fields using dual-phase lock-in amplifier. IEEE Antennas Wireless Propag Lett 3:340–343

    Article  Google Scholar 

  • Donelli M, Massa A, Pastorino M, Randazzo A, Rosani A (2005a) Microwave imaging for nondestructive evaluation of civil structures. Insight: Non-destr Testing Condition Monit 47(1):1761–1776

    Google Scholar 

  • Donelli M, Franceschini D (2010) Experiments with a modulated scattering system for through-wall identification. IEEE Antennas Wirel Propag Lett 9:20–23

    Article  Google Scholar 

  • Donelli M, Franceschini D, Massa A, Pastorino M, Zanetti A (2005b) Multi-Resolution iterative inversion of real inhomogeneous targets. In-verse Prob 21:51–63

    MathSciNet  Google Scholar 

  • Donelli M, Massa A (2005) Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers. IEEE Trans Microw Theory Tech 53(5):1761–1776

    Article  MathSciNet  Google Scholar 

  • Donelli M, Franceschini D, Franceschini G, Massa A (2005c) Effective exploitation of multi-view data through the iterative multi-scaling method—an experimental assessment. Prog Electromagn Res 54:137–154

    Article  Google Scholar 

  • Donelli M, Franceschini D, Rocca P, Massa A (2009) Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization. IEEE Trans Geosci Remote Sens 47(5):1467–1481

    Article  Google Scholar 

  • Donelli M, Pastorino M, Caorsi S (2001) A passive antenna system for data acquisition in scattering applications. IEEE Antennas Wirel Propag Lett 1:203–206

    Google Scholar 

  • Dunaeva T, Manturow A (2010) The phenomenological model microwave drying kinetics of food products. In: International Kharkov symposium on physics and engineering of microwaves, millimeter and submillimeter waves (MSMW), p 1–3

    Google Scholar 

  • Elber BR (2004) The satellite communication applications handbook. Artec House, London

    Google Scholar 

  • Favro LD (2001) Thermosonic imaging for NDE, In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation. American Institute of Physics, Washington, DC, vol 20 A, p 478–482

    Google Scholar 

  • Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gupta KC (1980) Microwaves. Wiley, New York

    Google Scholar 

  • Guven G (2006) The innovation process of the microwave heat technology.In: IEEE conference on technology management for the global future, PICMET-2006, vol 2, pp 788–793

    Google Scholar 

  • Hall J, Dietrich F, Logan C, Schmid G (1999) Development of high-energy neutron imaging for use in NDE applications, In: Green RE (ed) Nondestructive characterization of materials. Elsevier Science, The Netherlands, vol IX, pp 693–698

    Google Scholar 

  • Huang T, Mohan AS (2007) A microparticle swarm optimizer for the reconstruction of microwave images. IEEE Trans Antennas Propag 55(3 I):568–576

    Article  Google Scholar 

  • King RJ, Stiles P (1984) Microwave nondestructive evaluation of composites. In: King RJ (ed) Review of progress in quantitative nondestructive evaluation. Plenum, New York, vol. 3, pp 1073–1081

    Google Scholar 

  • Kolawole MO (2002) Satellite communication engineering. Marcel Dekker, New York

    Book  Google Scholar 

  • Lacomme P, Hardange JP, Marchais JC, Normant E (2001) Air and space borne radar systems: an introduction. William Andrew Publishing, New York

    Google Scholar 

  • Leher C, Liedtke CE (1999) 3D reconstruction of volume defects from few X-ray images. In: Leher C (ed) Computer analysis of images and patterns. Springer, Berlin, pp 257–284

    Google Scholar 

  • Levanon N, Mozeson E (2004) Radar Signals. Wiley, New York

    Book  Google Scholar 

  • Liang W, Hygate G, Nye JF, Gentle DG, Cook RJ (1997) A probe for making near-field measurements with minimal disturbance: the optically modulated scatterer. IEEE Trans Antennas Propag 1:772–780

    Article  Google Scholar 

  • Massa A, Franceschini D, Franceschini G, Pastorino M, Raffetto M, Donelli M (2005) Parallel GA-based approach for microwave imaging applications. IEEE Trans Antennas Propag 53(10):3118–3127

    Article  MathSciNet  Google Scholar 

  • Metaxas AC (1991) Microwave heating. Power Energy J 5(5):237–247

    Google Scholar 

  • Morinaga N, Kohno R, Sampei S (2002) Wireless communication technologies. Kluwer Academic Publisher, New York

    Google Scholar 

  • Norton S, Bowler J (1993) Theory of eddy current inversion. J Appl Phys 73:501–512

    Article  Google Scholar 

  • Nyfors E (2000) Industrial microwave sensors—a review. Subsurf Sens Technol Appl 1:23–43

    Article  Google Scholar 

  • Ostradahimi M, Mojabi P, Noghanian S, Shafai L, Pistorius S, Lovetri J (2012) A novel tomography system based on the scattering probe technique. IEEE Trans Instrum Meas 62(2):379–390

    Article  Google Scholar 

  • Pozar M (2011) Microwave engineering, 4th edn. Wiley, New York

    Google Scholar 

  • Risman PO, Celuch-Marcysiack M (2000) Electromagnetic modeling for microwave heating applications. In: 13th international conference on microwave, radar and wireless communications, MIKOM, vol 3, pp 167–182

    Google Scholar 

  • Roddy D (2001) Satellite communications. McGraw Hill, New York

    Google Scholar 

  • Rose JL, Pelts SP, Zhao X (2001) Defect characterization using SH guided waves. Rev Prog Quant Nondestr Eval 20 A:142–148

    Article  Google Scholar 

  • Scott AW (1993) Understanding microwaves. Wiley, New York

    Google Scholar 

  • Sisodia ML, Gupta VL (2004) Microwaves: introduction to circuits, devices and antennas. New Age International, New Deli

    Google Scholar 

  • Skolnik MI (1990) Radar handbook, 2nd edn. Mc Graw Hill, New York

    Google Scholar 

  • Tehran HM, Laurin J, Kashyap R (2010) Optically modulated probe for precision near-field measurements. IEEE Trans Instrum Meas 59(10):2755–2762

    Article  Google Scholar 

  • Thompson AR, Moran JM, Swenson GW (2004) Interferometry and synthesis in radio astronomy, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Tirawanichakul S, Saenaratana N, Boonyakiat P, Tirawanichakul Y (2011) Microwave and hot air drying of cashew nut: Drying kinetics and quality aspects. In: IEEE conference on humanities, science and engineering (CHUSER), pp 825–830

    Google Scholar 

  • Varith J, Noochuay C, Netsawang P, Hirunstitporn B, Jamin S, Krairiksh M (2007) Design of multimode-circular microwave cavity for agrifood processing.In: IEEE proceedings of Asia-Pacific microwave conference, APCM, pp 1–4

    Google Scholar 

  • Vauchamp S, Lalande M, Andrieu J, Jecko B, Lasserre JL, Pcastain L, Cadilhon B (2010) Utilization of target scattering to measure high-level electromagnetic field: the MICHELSON method. IEEE Trans Instrum Meas 59(9):2405–2413

    Article  Google Scholar 

  • Wilson TL, Rohlfs K, Huttemeister S (2009) Tools of radio astronomy, 5th edn. Springer, Berlin

    Google Scholar 

  • Zoughi R (2000) Microwave nondestructive testing and evaluation. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Donelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Donelli, M. (2014). Microwave Imaging. In: Manickavasagan, A., Jayasuriya, H. (eds) Imaging with Electromagnetic Spectrum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54888-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54888-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54887-1

  • Online ISBN: 978-3-642-54888-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics