Skip to main content

Thermal Infrared Imaging

  • Chapter
  • First Online:
Imaging with Electromagnetic Spectrum

Abstract

Thermal imaging is a non-contact method in which the radiation pattern of an object is converted into a visible image called thermal image or thermogram. All the objects at temperature above absolute zero (−273 °C) emit infrared radiation. The infrared band with wavelength from 3 to 14 µm is called thermal infrared region. This is used in imaging applications that uses heat signatures. Thermal imaging maps the surface temperature of any object with high thermal and spatial resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alchanatis V, Cohen Y, Cohen S, Moller M, Sprinstin M, Meron M, Tsipris J, Saranga Y, Sela E (2010) Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging. Precis Agric 11:27–41

    Article  Google Scholar 

  • Bachmann J, Earles R (2000) Postharvest handling of fruits and vegetables—horticulture technical note. ATTRA 1:1–19

    Google Scholar 

  • Balaguer N, Castro-Giráldez M, Fito PJ (2013) Study of pork meat freezing process by infrared thermography. In: Inside food symposium, Leuven, Belgium

    Google Scholar 

  • Baranowski P, Lipecki J, Mazurek W, Walczak RT (2008) Detection of watercore in ‘Gloster’ apples using thermography. Postharvest Biol Technol 47:358–366

    Article  Google Scholar 

  • Baranowski P, Mazurek W (2009) Detection of physiological disorders and mechanical defects in apples using thermography. Int Agrophys 23:9–17

    Google Scholar 

  • Baranowski P, Mazurek W, Witkowska-Walczak B, Sławinski C (2009) Detection of early apple bruises using pulsed-phase thermography. Postharvest Biol Technol 53:91–100

    Article  Google Scholar 

  • Baranowski P, Mazurek W, Wozniak J, Majewska U (2012) Detection of early bruises in apples using hyper spectral data and thermal imaging. J Food Eng 110:345–355

    Article  Google Scholar 

  • Berry BW (2006) Use of infrared thermography to assess temperature variability in beef patties cooked from the frozen and thawed states. Foodservice Res Int 12:255–262

    Article  Google Scholar 

  • Boldor D, Sanders TH, Swartzel KR, Simunovic J (2005) Thermal profiles and moisture loss during continuous microwave drying of peanuts. Peanut Sci 32:32–41

    Article  Google Scholar 

  • Bulanon DM, Burks TF, Alchanatis V (2008) Study on temporal variation in citrus canopy using thermal imaging for citrus fruit detection. Biosyst Eng 101:161–171

    Article  Google Scholar 

  • Chaerle L, Caeneghem WV, Messens E, Lambers H, Montagu MV, Straeten DVD (1999) Presymptomatic visualization of plant—virus interactions by thermography. Nat Biotechnol 17:813–816

    Article  Google Scholar 

  • Chaerle L, Boever FD, Montagu MV, Straeten DVD (2001) Thermographic visualization of cell death in tobacco and Arabidopsis. Plant Cell Environ 24:15–25

    Article  Google Scholar 

  • Chelladurai V, Jayas DS, White NDG (2010) Thermal imaging for detecting fungal infection in stored wheat. J Stored Prod Res 46:174–179

    Article  Google Scholar 

  • Chelladurai V, Kaliramesh S, Jayas DS (2012) Detection of Callosobruchus maculatus (F.) infestation in mung bean (Vigna radiata) using thermal imaging technique. In: NABEC-CSBE/SCGAB 2012 joint meeting and technical conference northeast agricultural and biological engineering conference, Orillia, Ontario

    Google Scholar 

  • Cohen Y, Alchanatis V, Meron M, Saranga Y, Tsipris J (2005) Estimation of leaf water potential by thermal imagery and spatial analysis. J Exp Bot 56:1843–1852

    Article  Google Scholar 

  • Costa NL, Stelletta C, Cannizzo C, Gianesella M, Fiego PLD, Morgante M (2007) The use of thermography on the slaughter-line for the assessment of pork and raw ham quality. Ital J Anim Sci 6:704–706

    Google Scholar 

  • Cuibus L, Castro-Giráldez M, Fito PJ, Fabbri A (2013) Application of infrared thermography and dielectric spectroscopy for controlling freezing process of raw potato. In: Inside food symposium, Leuven, Belgium

    Google Scholar 

  • Danno A, Miyazato M, Ishiguro E (1978) Quality evaluation of agricultural products by infrared imaging method: I. Grading of fruits for bruise and other surface defects. Memoirs of the faculty of agriculture, Kagoshima University, Kagoshima, vol 14, pp 123–138

    Google Scholar 

  • Danno A, Miyazato M, Ishiguro E (1980) Quality evaluation of agricultural products by infrared imaging method: III. Maturity evaluation of fruits and vegetable. Memoirs of the faculty of agriculture, Kagoshima University, Kagoshima, vol 16, pp 157–164

    Google Scholar 

  • Fito PJ, Ortolá MD, De los Reyes R, Fito P, De los Reyes E (2004) Control of citrus surface drying by image analysis of infrared thermography. J Food Eng 61:287–290

    Google Scholar 

  • FLIR (2012) The ultimate infrared handbook for Rand D professionals. FLIR Systems Incorporations, NH

    Google Scholar 

  • Fuller MP, Wisniewski M (1998) The use of infrared thermal imaging in the study of ice nucleation and freezing of plants. J Therm Biol 23:81–89

    Article  Google Scholar 

  • Gan-Mor S, Regev R, Levi A, Eshel D (2011) Adapted thermal imaging for the development of postharvest precision steam-disinfection technology for carrots. Postharvest Biol Technol 59:265–271

    Article  Google Scholar 

  • Geyer S, Gottschalk K (2008) Infrared thermography to monitor natural ventilation during storage of potatoes. Agric Eng Int CIGR J X:1–14

    Google Scholar 

  • Gowen AA, Tiwari BK, Cullen PJ, McDonnell K, O’Donnell CP (2010) Applications of thermal imaging in food quality and safety assessment—review. Trends Food Sci Technol 21:190–200

    Article  Google Scholar 

  • Grant OM, Davies MJ, James CM, Johnson AW, Leinonen I, Simpson DW (2012) Thermal imaging and carbon isotope composition indicate variation amongst strawberry (Fragaria × ananassa) cultivars in stomatal conductance and water use efficiency. Environ Exp Bot 76:7–15

    Article  Google Scholar 

  • Grant OM, Tronina L, Jones HG, Chaves MM (2007) Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J Exp Bot 58:815–825

    Article  Google Scholar 

  • Hahn F, Hernández G, Echeverría E, Romanchick E (2006) Escherichia coli detection using thermal images. Can Biosyst Eng 48:4.7–4.13

    Google Scholar 

  • Hellebrand HJ, Herppich WB, Beuche H, Dammer KH, Linke M, Flath K (2006) Investigations of plant infections by thermal vision and NIR imaging. Int Agrophysics 20:1–10

    Google Scholar 

  • Holst GC (2000) Common sense approach to thermal imaging. SPIE Press and JCD Publishing, FL

    Google Scholar 

  • Ibarra JG, Tao Y, Xin H (2000) Combined IR imaging-neural network method for the estimation of internal temperature in cooked chicken meat. Opt Eng 39:3032–3038

    Article  Google Scholar 

  • Infrared Training Center (2002) Course manual—level I, MA, USA

    Google Scholar 

  • Inoue Y, Kimball BA, Jackson RD, Pinter PJ Jr, Rejinato RJ (1990) Remote estimation of leaf transpiration rate and stomatal resistance based on infrared thermometry. Agric For Meteorol 51:21–33

    Article  Google Scholar 

  • Jones HG (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22:1043–1055

    Article  Google Scholar 

  • Jones HG (2004) Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv Bot Res 41:107–162

    Article  Google Scholar 

  • Jones HG, Schofield P (2008) Thermal and other remote sensing of plant stress. Gen Appl Plant Physiol 34(1–2):19–32

    Google Scholar 

  • Jones HG, Stoll M, Santos T, Sousa CD, Chaves MM, Grant OM (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Bot 53:2249–2260

    Article  Google Scholar 

  • Kalma JD, Jupp DLB (1990) Estimating evaporation from pasture using infrared thermometry: evaluation of a one-layer resistance model. Agric For Meteorol 51:223–246

    Article  Google Scholar 

  • Lindenthal M, Steiner U, Dehne HW, Oerke EC (2005) Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Am Phytopathological Soc 95:233–240

    Article  Google Scholar 

  • Linke M, Geyer M, Beuche H, Hellebrand HJ (2000) Possibilities and limits of the use of thermography for the examination of horticultural products. Agrartechnische Forschung 6, Heft 6, S:110–114

    Google Scholar 

  • Manickavasagan A, Jayas DS, White NDG (2006a) Non-uniformity of surface temperatures of grain after microwave treatment in an industrial microwave drier. Drying Technol 24:1559–1567

    Article  Google Scholar 

  • Manickavasagan A, Jayas DS, White NDG, Jiuan F (2006b) Thermal imaging of a stored grain silo to detect a hot spot. Appl Eng Agric 22:891–897

    Article  Google Scholar 

  • Manickavasagan A, Jayas DS (2007) Infrared thermal imaging for agricultural and food applications. Stewart Postharvest Rev 5:1–8

    Article  Google Scholar 

  • Manickavasagan A, Jayas DS, White NDG (2007) Germination of wheat grains from uneven microwave heating in an industrial microwave dryer. Can Biosyst Eng 49:3.23–3.27

    Google Scholar 

  • Manickavasagan A, Jayas DS, White NDG (2008a) Thermal imaging to detect infestation by Cryptolestes ferrugineus inside wheat kernels. J Stored Prod Res 44:186–192

    Article  Google Scholar 

  • Manickavasagan A, Jayas DS, White NDG, Paliwal J (2008b) Wheat class identification using thermal imaging: A potential innovative technique. Trans ASAB 51:649–651

    Article  Google Scholar 

  • Manickavasagan A, Jayas DS, Vadivambal R (2009) Non-uniform microwave heating of ready-to-eat chicken pies. Can Biosyst Eng 51:3.39–3.44

    Google Scholar 

  • Manickavasagan A, Jayas DS, White NDG, Paliwal J (2010) Wheat class identification using thermal imaging. Food Bioprocess Technol 3:450–460

    Article  Google Scholar 

  • Meinlschmidt P, Maergner V (2002) Detection of foreign substances in food using thermography. In: Conference thermo sense XXIV, Orlando, Florida, USA, pp 565–571

    Google Scholar 

  • Meinlschmidt P, Margner V (2003) Thermographic techniques and adopted algorithms for automatic detection of foreign bodies in food. In: Proceedings of thermo sense XXV, Bellingham, WA: SPIE 2003, pp 168–177

    Google Scholar 

  • Meola C, Carlomagno GM (2004) Recent advances in the use of infrared thermography—review article. Meas Sci Technol 15:R27–R58

    Article  Google Scholar 

  • Meron M, Sprintsin M, Tsipris J, Alchanatis V, Cohen Y (2013) Foliage temperature extraction from thermal imagery for crop water stress determination. Precision Agric. doi:10.1007/s11119-013-9310-0

    Google Scholar 

  • Moller M, Alchanatis V, Cohen Y, Meron M, Tsipris J, Naor A, Ostrovsky V, Sprintsin M, Cohen S (2007) Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J Exp Bot 58:827–838

    Article  Google Scholar 

  • Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132

    Article  Google Scholar 

  • Offermann S, Bicanic D, Krapez JC, Balageas D, Gerkema E, Chirtoc M, Egee M, Keijzer K, Jalink H (1998) Infrared transient thermography for non-contact, nondestructive inspection of whole and dissected apples and of cherry tomatoes at different maturity stages. Instrum Sci Technol 26(2–3):145–155

    Article  Google Scholar 

  • Pearce RS, Fuller MP (2001) Freezing of barley studied by infrared video thermography. Plant Physiol 125:227–240

    Article  Google Scholar 

  • Sankaran S, Maja JM, Buchanon S, Ehsani R (2013) Huanglongbing (citrus greening) detection using visible, near infrared and thermal imaging techniques. Sensors 13:2117–2130

    Article  Google Scholar 

  • Stajnko D, Lakota M, Hoĉevar M (2004) Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging. Comput Electron Agric 42:31–42

    Article  Google Scholar 

  • Sugiura R, Noguchi N, Ishii K (2007) Correction of low-altitude thermal images applied to estimating soil water status. Biosyst Eng 96:301–313

    Article  Google Scholar 

  • Triffano-Schiffo MV, Castro-Giráldez M, Fito PJ (2013) Study of ham drying kinetics by infrared thermography. In: Inside food symposium, Leuven, Belgium

    Google Scholar 

  • Vadivambal R, Chelladurai V, Jayas DS, White NDG (2010) Detection of sprout-damaged wheat using thermal imaging. Appl Eng Agric 26:999–1004

    Article  Google Scholar 

  • Vadivambal R, Chelladurai V, Jayas DS, White NDG (2011) Determination of sprout-damaged barley using thermal imaging. Agric Eng Int CIGR J 13:1–9

    Google Scholar 

  • Vadivambal R, Jayas DS, Chelladurai V, White NDG (2009) Preliminary study of surface temperature distribution during microwave heating of cereals and oilseed. Can Biosyst Eng 51:3.45–3.52

    Google Scholar 

  • Van-Linden V, Vereycken R, Bravo C, Ramon H, Baerdemaeker JD (2003) Detection technique for tomato bruise damage by thermal imaging. Acta Hortic (ISHS) 599:389–394

    Google Scholar 

  • Varith J, Hyde GM, Baritelle AL, Fellman JK, Sattabongkot T (2003) Non-contact bruise detection in apples by thermal imaging. Innovative Food Sci Emerg Technol 4:211–218

    Article  Google Scholar 

  • Veraverbeke EA, Verboven P, Lammertyn J, Cronje P, Baerdemaeker JD, Nicolai BM (2006) Thermographic surface quality evaluation of apple. J Food Eng 77:162–168

    Article  Google Scholar 

  • Warmann C, Margner V (2005) Quality control of hazel nuts using thermographic image processing. In: IAPR conference on machine vision applications, Tsukuba Science City, Japan

    Google Scholar 

Download references

Acknowledgment

We thank The Research Council (TRC) of Sultanate of Oman for funding this study (Project No. RC/AGR/SWAE/11/01—Development of Computer Vision Technology for Quality Assessment of Dates in Oman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manickavasagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Teena, M., Manickavasagan, A. (2014). Thermal Infrared Imaging. In: Manickavasagan, A., Jayasuriya, H. (eds) Imaging with Electromagnetic Spectrum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54888-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54888-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54887-1

  • Online ISBN: 978-3-642-54888-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics