Skip to main content

Introduction to the Electromagnetic Spectrum

  • Chapter
  • First Online:

Abstract

Electromagnetic radiation is a form of energy released and absorbed by charged particles. This radiation has specific electrical and magnetic properties. The wavelength range corresponding to the electromagnetic radiation is termed the ‘electromagnetic spectrum.’ The way in which the electromagnetic spectrum interacts with any material can be used in qualitative and quantitative analysis of various materials. Therefore, the electromagnetic spectrum is often used to assess various physical and chemical properties of objects in food and agriculture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah MZ, Guan LC, Lim KC, Karim AA (2004) The applications of computer vision system and tomographic radar imaging for assessing physical properties of food. J Food Eng 61(1):125–135

    Article  Google Scholar 

  • Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Aleixos N, Blasco J, Navarron F, Molto E (2002) Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Comput Electron Agric 33:121–137

    Article  Google Scholar 

  • Alvarez-Ordonez A, Mouwen D, Lopez M, Prieto M (2011) Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. J Microbiol Methods 84:369–378

    Article  Google Scholar 

  • Apostol S, Viau A, Tremblay N, Briantais J, Prasher S, Parent L, Moya I (2003) Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Can J Remote Sens 29:57–65

    Article  Google Scholar 

  • Ballester C, Jimenez-Bello M, Castel J, Intrigliolo D (2013) Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric For Meteorol 168:120–129

    Article  Google Scholar 

  • Barcelon E, Tojo S, Watanabe K (1999) X-ray computed tomography for internal quality evaluation of peaches. J Agric Eng Res 73:323–330

    Article  Google Scholar 

  • Bintsis T, Litopoulou-Tzanetaki E, Robinson R (2000) Existing and potential applications of ultraviolet light in the food industry—a critical review. J Sci Food Agric 80:637–645

    Article  Google Scholar 

  • Blasco J, Aleixos N, Gomez J, Molto E (2007) Citrus sorting by identification of the most common defects using multispectral computer vision. J Food Eng 83:384–393

    Article  Google Scholar 

  • Bravo C, Moshou D, West J, McCartney A, Ramon H (2003) Early disease detection in wheat fields using spectral reflectance. Biosyst Eng 84:137–145

    Article  Google Scholar 

  • Brosnan T, Sun D (2004) Improving quality inspection of food products by computer vision—a review. J Food Eng 61:3–16

    Article  Google Scholar 

  • Bulanon D, Burks T, Alchanatis V (2008) Study on temporal variation in citrus canopy using thermal imaging for citrus fruit detection. Biosyst Eng 101:161–171

    Article  Google Scholar 

  • Burgula Y, Khali D, Kim S, Krishnan S, Cousin M, Gore J, Reuhs B, Mauer L (2007) Review of mid-infrared Fourier transform-infrared spectroscopy applications for bacterial detection. J Rapid Methods Autom Microbiol 15:146–175

    Article  Google Scholar 

  • Cattaneo T, Giardina C, Sinelli N, Riva M, Giangiacomo R (2005) Application of FT-NIR and FT-IR spectroscopy to study the shelf-life of Crescenza cheese. Int Dairy J 15:693–700

    Article  Google Scholar 

  • Chaerle L, De Boever F, Van Montagu M, Van der Straeten D (2001) Thermographic visualization of cell death in tobacco and Arabidopsis. Plant Cell Environ 24:15–25

    Article  Google Scholar 

  • Chaerle L, Van Caeneghem W, Messens E, Lambers H, Van Montagu M, Van Der Straeten D (1999) Presymptomatic visualization of plant-virus interactions by thermography. Nat Biotechnol 17:813–816

    Article  Google Scholar 

  • Chen YR, Chao K, Kim MS (2002) Machine vision technology for agricultural applications. Comput Electron Agric 36(2):173–191

    Article  Google Scholar 

  • Clark CJ, Hockings PD, Joyce DC, Mazucco RA (1997) Application of magnetic resonance imaging to pre-and post-harvest studies of fruits and vegetables. Postharvest Biol Technol 11(1):1–21

    Article  Google Scholar 

  • Datta AK (2001) Handbook of microwave technology for food application. CRC Press, Florida

    Google Scholar 

  • Downey G, Briandet R, Wilson R, Kemsley E (1997) Near-and mid-infrared spectroscopies in food authentication: coffee varietal identification. J Agric Food Chem 45:4357–4361

    Article  Google Scholar 

  • Du CJ, Sun DW (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Technol 15(5):230–249

    Article  Google Scholar 

  • Dupuy N, Wojciechowski C, Ta C, Huvenne J, Legrand P (1997) Mid-infrared spectroscopy and chemometrics in corn starch classification. J Mol Struct 410:551–554

    Google Scholar 

  • ElMasry G, Wang N, Vigneault C, Qiao J, ElSayed A (2008) Early detection of apple bruises on different background colors using hyperspectral imaging. Lwt-Food Sci Technol 41:337–345

    Article  Google Scholar 

  • Farkas J (2006) Irradiation for better foods. Trends Food Sci Technol 17:148–152

    Article  MathSciNet  Google Scholar 

  • Fuller M, Wisniewski M (1998) The use of infrared thermal imaging in the study of ice nucleation and freezing of plants. J Therm Biol 23:81–89

    Article  Google Scholar 

  • Golob T, Dobersek U, Kump P, Necemer M (2005) Determination of trace and minor elements in Slovenian honey by total reflection X-ray fluorescence spectroscopy. Food Chem 91:593–600

    Article  Google Scholar 

  • Gonzalez-Dugo V, Zarco-Tejada P, Berni J, Suarez L, Goldhamer D, Fereres E (2012) Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agric For Meteorol 154:156–165

    Article  Google Scholar 

  • Gowen A, O’Donnell C, Cullen P, Downey G, Frias J (2007) Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol 18:590–598

    Article  Google Scholar 

  • Gowen A, Tiwari B, Cullen P, McDonnell K, O’Donnell C (2010) Applications of thermal imaging in food quality and safety assessment. Trends Food Sci Technol 21:190–200

    Article  Google Scholar 

  • Gurdeniz G, Ozen B (2009) Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem 116:519–525

    Article  Google Scholar 

  • Hadjiloucas S, Walker GC, Bowen JW, Becerra VM, Zafiropoulos A, Galvão RKH (2009) High signal to noise ratio THz spectroscopy with ASOPS and signal processing schemes for mapping and controlling molecular and bulk relaxation processes. J Phys Conf Ser 183:012003. doi:10.1088/1742-6596/183/1/012003 (ISSN 1742-6588)

    Article  Google Scholar 

  • Han Y, Bowers S, Dodd R (1992) Nondestructive detection of split-pit peaches. Transactions of the ASAE 35:2063–2067

    Article  Google Scholar 

  • Hawkins SA, Park B, Poole GH, Gottwald TR, Windham WR, Albano J, Lawrence KC (2010a) Comparison of FTIR spectra between Huanglongbing (Citrus greening) and other citrus maladies. J Agric Food Chem 58(10):6007–6010

    Article  Google Scholar 

  • Hawkins SA, Park B, Poole GH, Gottwald T, Windham WR, Lawrence KC (2010b) Detection of Citrus huanglongbing by Fourier transform infrared–attenuated total reflection spectroscopy. Appl Spectrosc 64(1):100–103

    Article  Google Scholar 

  • Huang MY, Huang WH, Liu LY, Huang YD, Wang JH, Zhao CH, Wan AM (2004) Spectral reflectance feature of winter wheat single leaf infested with stripe rust and severity level inversion. Trans Chin Soc Agric Eng 20:176–180

    Google Scholar 

  • Huisman JA, Hubbard SS, Redman JD, Annan AP (2003) Measuring soil water content with ground penetrating radar. Vadose zone j 2(4):476–491

    Article  Google Scholar 

  • Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T, Koch M (2010) Terahertz imaging: applications and perspectives. Appl Opt 49(19):E48–E57

    Article  Google Scholar 

  • Jamieson V (2002) Physics raises food standards. Phys World 15:21–22

    Google Scholar 

  • Janik L, Merry R, Forrester S, Lanyon D, Rawson A (2007) Rapid prediction of soil water retention using mid infrared spectroscopy. Soil Sci Soc Am J 71:507–514

    Article  Google Scholar 

  • Kacurakova M, Wilson R (2001) Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr Polym 44:291–303

    Article  Google Scholar 

  • Kerr WL, Kauten RJ, McCarthy MJ, Reid DS (1998) Monitoring the formation of ice during food freezing by magnetic resonance imaging. LWT-Food Sci Technol 31(3):215–220

    Article  Google Scholar 

  • Kim MS, Chen YR, Mehl PM (2001) Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Trans ASABE 44(3):721–730

    Google Scholar 

  • Kim M, Lefcourt A, Chao K, Chen Y, Kim I, Chan D (2002) Multispectral detection of fecal contamination on apples based on hyperspectral imagery: part I. Application of visible and near-infrared reflectance imaging. Trans ASAE 45:2027–2037

    Google Scholar 

  • Kim S, Schatzki T (2000) Apple watercore sorting system using X-ray imagery: I. Algorithm development. Trans ASAE 43:1695–1702

    Article  Google Scholar 

  • Kim S, Schatzki T (2001) Detection of pinholes in almonds through X-ray imaging. Trans ASAE 44:997–1003

    Google Scholar 

  • Lai Y, Kemsley E, Wilson R (1994) Potential of Fourier transform-infrared spectroscopy for the authentication of vegetable-oils. J Agric Food Chem 42:1154–1159

    Article  Google Scholar 

  • Larsolle A, Muhammed H (2007) Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density. Precis Agric 8:37–47

    Article  Google Scholar 

  • Lenthe J, Oerke E, Dehne H (2007) Digital infrared thermography for monitoring canopy health of wheat. Precis Agric 8:15–26

    Article  Google Scholar 

  • Lu R (2003) Detection of bruises on apples using near-infrared hyperspectral imaging. Trans ASAE 46:523–530

    Google Scholar 

  • Lu R, Chen YR (1999) Hyperspectral imaging for safety inspection of food and agricultural products. In photonics east (ISAM, VVDC, IEMB). International Society for Optics and Photonics. pp 121–133

    Google Scholar 

  • Mahesh S, Manickavasagan A, Jayas D, Paliwal J, White N (2008) Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst Eng 101:50–57

    Article  Google Scholar 

  • Malenovsky Z, Mishra K, Zemek F, Rascher U, Nedbal L (2009) Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. J Exp Bot 60:2987–3004

    Article  Google Scholar 

  • Malthus T, Madeira A (1993) High-resolution spectroradiometry—spectral reflectance of field bean-leaves infected by Botrytis fabae. Remote Sens Environ 45:107–116

    Article  Google Scholar 

  • Marigheto N, Kemsley E, Defernez M, Wilson R (1998) A comparison of mid-infrared and Raman spectroscopies for the authentication of edible oils. J Am Oil Chem Soc 75:987–992

    Google Scholar 

  • Mascarenhas M, Dighton J, Arbuckle G (2000) Characterization of plant carbohydrates and changes in leaf carbohydrate chemistry due to chemical and enzymatic degradation measured by microscopic ATR FT-IR spectroscopy. Appl Spectrosc 54:681–686

    Article  Google Scholar 

  • McCarty G, Reeves J, Reeves V, Follett R, Kimble J (2002) Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci Soc Am J 66:640–646

    Article  Google Scholar 

  • Mehl P, Chen Y, Kim M, Chan D (2004) Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. J Food Eng 61:67–81

    Article  Google Scholar 

  • Muhammed HH (2002) Using hyperspectral reflectance data for discrimination between healthy and diseased plants, and determination of damage-level in diseased plants. In: IEEE proceedings of the 31st applied imagery pattern recognition workshop, pp 49–54

    Google Scholar 

  • Muhammed H (2005) Hyperspectral crop reflectance data for characterising and estimating fungal disease severity in wheat. Biosyst Eng 91:9–20

    Article  Google Scholar 

  • Naidu R, Perry E, Pierce F, Mekuria T (2009) The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comput Electron Agric 66:38–45

    Article  Google Scholar 

  • Nicolai B, Lotze E, Peirs A, Scheerlinck N, Theron K (2006) Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biol Technol 40:1–6

    Article  Google Scholar 

  • Osterholm M, Norgan A (2004) The role of irradiation in food safety. N Engl J Med 350:1898–1901

    Article  Google Scholar 

  • Pires LF, de Macedo JR, de Souza MD, Bacchi OO, Reichardt K (2002) Gamma-ray computed tomography to characterize soil surface sealing. Appl Radiat Isot 57(3):375–380

    Article  Google Scholar 

  • Pires LF, Bacchi OOS, Reichardt K (2004) Damage to soil physical properties caused by soil sampler devices as assessed by gamma ray computed tomography. Soil Res 42:857–863

    Article  Google Scholar 

  • Polischuk VP, Shadchina TM, Kompanetz TI, Budzanivskaya IG, Sozinov A (1997) Changes in reflectance spectrum characteristic of Nicotiana debneyi plant under the influence of viral infection. Arch Phytopathol Plant Prot 31:115–119

    Article  Google Scholar 

  • Reeves J, McCarty G, Reeves V (2001) Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils. J Agric Food Chem 49:766–772

    Article  Google Scholar 

  • Sankaran S, Ehsani R, Etxeberria E (2010a) Mid-infrared spectroscopy for detection of Huanglongbing (greening) in Citrus leaves. Talanta 83:574–581

    Article  Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010b) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Article  Google Scholar 

  • Schatzki T, Haff R, Young R, Can I, Le L, Toyofuku N (1997) Defect detection in apples by means of x-ray imaging. Trans ASAE 40:1407–1415

    Article  Google Scholar 

  • Schiffmann RF (1986) Food product development for microwave processing. Food Technol 40:94–98

    Google Scholar 

  • Schnug E, Haneklaus S (1988) Theoretical principles for the indirect determination of the total glucosinolate content in rapeseed and meal quantifying the sulfur concentration via X-ray-fluorescence (X-RF method). J Sci Food Agric 45:243–254

    Article  Google Scholar 

  • Sighicelli M, Colao F, Lai A, Patsaeva S (2009) Monitoring post-harvest orange fruit disease by fluorescence and reflectance hyperspectral imaging. ISHS Acta Hortic 817:277–284

    Google Scholar 

  • Slaughter D, Obenland D, Thompson J, Arpaia M, Margosan D (2008) Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biol Technol 48:341–346

    Article  Google Scholar 

  • Spinelli F, Noferini M, Costa G (2006) Near infrared spectroscopy (NIRs): perspective of fire blight detection in asymptomatic plant material. Acta Hortic 704:87–90

    Google Scholar 

  • Tallada JG, Nagata M, Kobayashi T (2006) Detection of bruises in strawberries by hyperspectral Imaging. 2006 ASABE annual international meeting, Portland, OR

    Google Scholar 

  • Thybo AK, Jespersen SN, Lærke PE, Stødkilde-Jørgensen HJ (2004a) Nondestructive detection of internal bruise and spraing disease symptoms in potatoes using magnetic resonance imaging. Magn Reson Imaging 22(9):1311–1317

    Article  Google Scholar 

  • Thybo AK, Szczypiński PM, Karlsson AH, Dønstrup S, Stødkilde-Jørgensen HS, Andersen HJ (2004b) Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different image analysis methods. J Food Eng 61(1):91–100

    Article  Google Scholar 

  • Tollner EW, Shahin MA, Maw BW, Gitaitis RD, Summer DR (1999) Classification of onions based on internal defects using imaging processing and neural network techniques. 1999 ASAE annual international meeting, Toronto, CA

    Google Scholar 

  • Vadivambal R, Jayas DS (2010) Non-uniform temperature distribution during microwave heating of food materials—A review. Food Bioprocess Technol 3(2):161–171

    Article  Google Scholar 

  • Vadivambal R, Jayas DS (2011) Applications of thermal imaging in agriculture and food industry-a review. Food Bioprocess Technol 4(2):186–199

    Article  Google Scholar 

  • Vandevoort F (1992) Fourier-transform infrared-spectroscopy applied to food analysis. Food Res Int 25:397–403

    Article  Google Scholar 

  • Wang W, Paliwal J (2007) Near-infrared spectroscopy and imaging in food quality and safety. Sens Instrum Food Qual Saf 1(4):193–207

    Article  MATH  Google Scholar 

  • Wang X, Yang W, Wheaton A, Cooley N, Moran B (2010) Efficient registration of optical and IR images for automatic plant water stress assessment. Comput Electron Agric 74:230–237

    Article  Google Scholar 

  • Wartelle L, Bradow J, Hinojosa O, Pepperman A, Sassenrathcole G, Dastoor P (1995) Quantitative cotton fiber maturity measurements by X-ray-fluorescence spectroscopy and advanced fiber information-system. J Agric Food Chem 43:1219–1223

    Article  Google Scholar 

  • West J, Bravo C, Oberti R, Lemaire D, Moshou D, McCartney H (2003) The potential of optical canopy measurement for targeted control of field crop diseases. Annu Rev Phytopathol 41:593–614

    Article  Google Scholar 

  • Wilson R, Tapp H (1999) Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods. Trac-Trends Anal Chem 18:85–93

    Article  Google Scholar 

  • Wulf J, Ruhmann S, Rego I, Puhl I, Treutter D, Zude M (2008) Nondestructive application of laser-induced fluorescence spectroscopy for quantitative analyses of phenolic compounds in strawberry fruits (Fragaria x ananassa). J Agric Food Chem 56:2875–2882

    Article  Google Scholar 

  • Xie M, von Bohlen A, Klockenkamper R, Gunther XJK (1998) Multielement analysis of Chinese tea (Camellia sinensis) by total-reflection X-ray fluorescence. Z Lebensm-Unters Forsch Food Res Technol 207:31–38

    Article  Google Scholar 

  • Xing J, Bravo C, Jancsok P, Ramon H, De Baerdemaeker J (2005) Detecting bruises on ‘Golden Delicious’ apples using hyperspectral imaging with multiple wavebands. Biosyst Eng 90:27–36

    Article  Google Scholar 

  • Xing J, De Baerdemaeker J (2005) Bruise detection on ‘Jonagold’ apples using hyperspectral imaging. Postharvest Biol Technol 37:152–162

    Article  Google Scholar 

  • Xu H, Ying Y, Fu X, Zhu S (2007) Near-infrared spectroscopy in detecting leaf miner damage on tomato leaf. Biosyst Eng 96:447–454

    Article  Google Scholar 

  • Yao H, Hruska Z, DiCrispino K, Brabham K, Lewis D, Beach J, Brown RL, Cleveland TE (2005) Differentiation of fungi using hyperspectral imagery for food inspection. 2005 ASAE annual international meeting, Tampa, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindhuja Sankaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sankaran, S., Ehsani, R. (2014). Introduction to the Electromagnetic Spectrum. In: Manickavasagan, A., Jayasuriya, H. (eds) Imaging with Electromagnetic Spectrum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54888-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54888-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54887-1

  • Online ISBN: 978-3-642-54888-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics