Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 552))

Abstract

This chapter concentrates the problem of recovery a high-resolution (HR) image from a single low-resolution input image. Recent research proposed to deal with the image super-resolution problem with sparse coding, which is based on the well reconstruction of any local image patch by a sparse linear combination of an appropriately chosen over-complete dictionary. Therein the chosen LR (Low-resolution) and HR (High-resolution) dictionaries have to be exactly corresponding for well reconstructing the local image patterns. However, the conventional sparse coding based image super-resolution usually achieves a global dictionary D=[D l ; D h ] by jointly training the concatenated LR and HR local image patches, and then reconstruct the LR and HR image as a linear combination of the separated D l and D h . This strategy only can achieve the global minimum reconstructing error of LR and HR local patches, and usually cannot obtain the exactly corresponding LR and HR dictionaries. In addition, the accurate coefficients for reconstructing the HR image patch using HR dictionary D h are also unable to be estimated using only the LR input and the LR dictionary D l . Therefore, this paper proposes to firstly learn the HR dictionary D h from the features of the training HR local patches, and then propagates the HR dictionary to the LR one, called as HR2LR dictionary propagation, by mathematical proving and statistical analysis. The effectiveness of the proposed HR2LR dictionary propagation in sparse coding for super-resolution is demonstrated by comparison with the conventional super-resolution approaches such as sparse coding and interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  2. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37, 3311–3325 (1997)

    Article  Google Scholar 

  3. Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete representations. Neural Comp. 12(2) (2000)

    Google Scholar 

  4. Olshausen, B.A.: Sparse coding of time-varying natural images. Journal of Vision 2(7), Article 130 (2002)

    Google Scholar 

  5. Olshausen, B.A., Field, D.J.: Sparse coding of sensory inputs. Cur. Op. Neurobiology 14(4) (2004)

    Google Scholar 

  6. Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  7. Aharon, M., Elad, M.: Image denoising via sparse and re- dundant representations over learned dictionaries. IEEE Transactions on Image Processing 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  8. Donoho, D.L., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  9. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2, 433–459 (2010)

    Article  Google Scholar 

  10. Roweis, S.: M Algorithms for PCA and SPCA. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems. The MIT Press (1998)

    Google Scholar 

  11. Bell, A.J., Sejnowski, T.J.: The ‘Independent Components’ of natural scenes are edge filters. Vision Research 37, 3327–3338 (1997)

    Article  Google Scholar 

  12. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  13. Common, P.: Independent component analysis-a new concept? Signal Processing 36, 287–314 (1994)

    Article  Google Scholar 

  14. Hyvarinen, A., Oja, E.: A fast fixed-point algorithm for indepepndent component analysis. Neural Computation 9, 1483–1492 (1997)

    Article  Google Scholar 

  15. Hyvarinen, A., Oja, E., Hoyer, P.: Image Denoising by Sparse Code Shrinkage. In: Haykin, S., Kosko, B. (eds.) Intelligent Signal Processing. IEEE Press (2000)

    Google Scholar 

  16. Han, X.-H., Nakao, Z., Chen, Y.-W.: An ICA-Domain Shrinkage based Poisson-Noise Reduction Algorithm and Its Application to Penumbral Imaging. IEICE Trans. Inf. & Syst. E88-D(4), 750–757 (2005)

    Google Scholar 

  17. Han, X.-H., Chen, Y.-W., Nakao, Z.: Robust Edge Detection by Independent Component Analysis in Noisy Images. IEICE Trans. Inf. & Syst. E87-D(9), 2204–2211 (2004)

    Google Scholar 

  18. Sceniak, M.P., Hawken, M.J., Shapley, R.: Visual spatial characterization of macaque V1 neurons. The Journal of Neurophysiology 85(5), 1873–1887 (2001)

    Google Scholar 

  19. Aharon, M., Elad, M.: Image denoising via sparse and re- dundant representations over learned dictionaries. IEEE Transactions on Image Processing 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  20. Cai, T.T., Wang, L.: Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise. IEEE Transactions on Information Theory 57(7), 4680–4688 (2011)

    Article  MathSciNet  Google Scholar 

  21. Tropp, J.A., Gilbert, A.C.: Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory 53(12) (December 2007)

    Google Scholar 

  22. Donoho, D.L., Tsaig, Y., Drori, I., Starck, J.-l.: Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit, Technique Report (2006)

    Google Scholar 

  23. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Conf. Rec. 27th Asilomar Conf. Signals, Syst. Comput., vol. 1 (1993)

    Google Scholar 

  24. Bergeaud, F., Mallat, S.: Matching pursuit of images. In: Proc. International Conference on Image Processing, vol. 1, pp. 53–56 (1995)

    Google Scholar 

  25. Neff, R., Zakhor, A.: Very low bit-rate video coding based on matching pursuits. IEEE Transactions on Circuits and Systems for Video Technology 7(1), 158–171 (1997)

    Article  Google Scholar 

  26. Mallat, S.G., Zhang, Z.: Matching Pursuits with Time-Frequency Dictionaries. IEEE Transactions on Signal Processing, 3397–3415 (December 1993)

    Google Scholar 

  27. Gunturk, B., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-domain super-resolution for face recognition. IEEE Transaction on Image Processing 12(5), 137–147 (2003)

    Article  Google Scholar 

  28. Zhang, J., Pu, J., Chen, C., Fleischer, R.: Low-resolution gait recognition. IEEE Transaction on Systems, Man, and Cybernetic–Part B: Cybernetics 40(4), 986–996 (2010)

    Article  Google Scholar 

  29. Galbraith, A., Theiler, J., Thome, K., Ziolkowski, R.: Resolution enhancement of multilook imagery for the multispectral thermal image. IEEE Transaction on Geoscience and Remote Sensing 43(9), 1964–1977 (2005)

    Article  Google Scholar 

  30. Boucher, A., Kyriakidis, C., Collin, C.: Geo-statistical solutions for super-resolution land cover mapping. IEEE Transaction on Geoscience and Remote Sensing 46(1), 272–283 (2008)

    Article  Google Scholar 

  31. Greenspan, H.: Super-resolution in medical imaging. The Computer Journal 52, 43–63 (2009)

    Article  Google Scholar 

  32. Kennedy, J.A., Israel, O., Frenkel, A., Bar-Shalom, R., Azhari, H.: Super-resolution in pet imaging. IEEE Transaction on Medical Imaging 25(2), 137–147 (2006)

    Article  Google Scholar 

  33. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision IJCV (2000)

    Google Scholar 

  34. Sun, J., Zheng, N.-N., Tao, H., Shum, H.: Image hallucinationwith primalsketch priors. In: Proc. CVPR (2003)

    Google Scholar 

  35. Chang, H., Yeung, D.-Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR (2004)

    Google Scholar 

  36. Roweis, S.T., Saul, L.K.: Nonlinear dimentionality reduction by locally linear embedding. In: Proc. CVPR (2003)

    Google Scholar 

  37. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: Proc. CVPR (2008)

    Google Scholar 

  38. Yang, J., Wright, J., Huang, T., Ma, Y.: Image Super-resolution via Sparse Representation. IEEE Transaction on Image Processing 19 (2010)

    Google Scholar 

  39. Elad, M., Aharon, M.: Image denoising via sparse and redundant representation over learned dictionaries. IEEE Transaction on Image Processing 15, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  40. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representation for image and video restoration. Multiscale Modeling and Simulation 7, 214–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Tropp, J.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50, 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  42. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic, Norwell (1991)

    Google Scholar 

  43. Hamerly, G., Elkan, C.: Alternatives to the k-means algorithm that find better clusterings. In: Proceedings of the Eleventh International Conference on Information and Knowledge Management (CIKM) (2002)

    Google Scholar 

  44. Vattani, A.: k-means requires exponentially many iterations even in the plane. Discrete and Computational Geometry 45(4), 596–616 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  45. Arthur, D., Manthey, B., Roeglin, H.: k-means has polynomial smoothed complexity. In: Proceedings of the 50th Symposium on Foundations of Computer Science (FOCS) (2009)

    Google Scholar 

  46. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society, Series C 28(1), 100–108 (1979)

    MATH  Google Scholar 

  47. Dasgupta, S., Freund, Y.: Random Projection Trees for Vector Quantization. IEEE Transactions on Information Theory 55, 3229–3242 (2009)

    Article  MathSciNet  Google Scholar 

  48. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The Planar k-Means Problem is NP-Hard. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 274–285. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  49. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc., Ser. B 39(1), 1–38 (1977)

    Google Scholar 

  50. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proc. ICCV (2009), http://www.wisdom.weizmann.ac.il/~vision/SingleImageSR.html

  51. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 28(3), 1–10 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Hua Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Han, XH., Chen, YW. (2014). Sparse Representation for Image Super-Resolution. In: Chen, YW., C. Jain, L. (eds) Subspace Methods for Pattern Recognition in Intelligent Environment. Studies in Computational Intelligence, vol 552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54851-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54851-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54850-5

  • Online ISBN: 978-3-642-54851-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics