Skip to main content

Ligand Binding to Nucleic Acids

  • Chapter
  • First Online:

Part of the book series: Physical Chemistry in Action ((PCIA))

Abstract

Among the preeminent compounds that bind to DNA are numerous anticancer and antibacterial therapeutics. The development of new chemotherapeutics has accelerated the need for sensitive and versatile analytical techniques that are capable of characterizing DNA/ligand interactions including determination of binding stoichiometries, selectivities, and affinities. Electrospray ionization mass spectrometry (ESI-MS) has emerged as a useful technique for the analysis of complexes formed between DNA and small molecules due to its low sample consumption and fast analysis time. This chapter describes the exploration, optimization, and validation of ESI-MS methods for characterizing DNA–ligand interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ESI:

Electrospray ionization

CID:

Collision-induced dissociation

References

  1. Goodman LS, Hardman JG, Limbird LE, Gilman AG (2001) Goodman & Gilman’s the pharmacological basis of therapeutics, 10th edn. New York, McGraw-Hill

    Google Scholar 

  2. Brana MF, Cacho M, Gradillas A, de Pascual-Teresa B, Ramos A (2001) Intercalators as anticancer drugs. Curr Pharm Des 7:1745–1780

    Article  CAS  Google Scholar 

  3. Liu HK, Sadler PJ (2011) Metal complexes as DNA intercalators. Acc Chem Res 44(5):349–359

    Article  CAS  Google Scholar 

  4. Bischoff G, Hoffmann S (2002) DNA-binding drugs used in medicinal therapy. Curr Med Chem 9:321–348

    Article  CAS  Google Scholar 

  5. Baraldi PG, Bovere A, Fruttarolo F, Preti D, Tabrizi M, Pavania M, Romagnoli R (2004) DNA minor groove binders as potential antitumor and antimicrobial agents. Med Res Rev 24:475–528

    Article  CAS  Google Scholar 

  6. Hartley JA, Hochhauser D (2012) Small molecule drugs-optimizing DNA damaging agent-based therapeutics. Curr Opin Pharmacol 12(4):3980402

    Article  Google Scholar 

  7. Huang Z-S, Tan J-H, Ou T-M, Li D, Gu L-Q (2011) G-quadruplex DNA and its ligands in anticancer therapy. In: Zhang L-H, Xi Z, Chattopadhyaya J (eds) Medicinal chemistry of nucleic acids. Wiley, Hoboken, NJ, pp 206–257

    Chapter  Google Scholar 

  8. Reedijk J, Lohman PHM (1985) Cisplatin: synthesis, antitumour activity and mechanism of action. Pharm World Sci 7:173–180

    CAS  Google Scholar 

  9. Rajski SR, Williams RM (1998) DNA cross-linking agents as antitumor drugs. Chem Rev 98:2723–2795

    Article  CAS  Google Scholar 

  10. Borowy-Borowski H, Lipman R, Tomasz M (1990) Recognition between mitomycin C and specific DNA sequences for cross-link formation. Biochemistry 29:2999–3006

    Article  CAS  Google Scholar 

  11. Zhang L-H, Xi Z, Chattopadhyaya J (2011) Medicinal chemistry of nucleic acids. Wiley, Hoboken, NJ

    Book  Google Scholar 

  12. Singh Y, Palombo M, Sinko PJ (2008) Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem 15:1802

    Article  CAS  Google Scholar 

  13. Hofstadler SA, Griffey RH (2001) Analysis of noncovalent complexes of DNA and RNA by mass spectrometry. Chem Rev 101:377–390

    Article  CAS  Google Scholar 

  14. Beck JL, Colgrave ML, Ralph SF, Sheil MM (2001) Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrom Rev 20:61–87

    Article  CAS  Google Scholar 

  15. Rosu F, De Pauw E, Gabelica V (2008) Electrospray mass spectrometry to study drug-nucleic acid interactions. Biochimie 90:1074–1087

    Article  CAS  Google Scholar 

  16. Beck JL (2011) Developments in electrospray ionization mass spectrometry of noncovalent DNA-ligand complexes. Aust J Chem 64:705–717

    Article  CAS  Google Scholar 

  17. Gabelica V (2010) Electrospray mass spectrometry of noncovalent complexes between small molecule ligands and nucleic acids. In: Banoub JH, Limbach PA (eds) Mass spectrometry of nucleosides and nucleic acids, vol 8. CRC, Hoboken, NJ, pp 283–302

    Google Scholar 

  18. Brodbelt JS (2009) Evaluation of DNA/ligand interactions by electrospray ionization mass spectrometry. Annu Rev Anal Chem 3:67–87

    Article  Google Scholar 

  19. Hofstadler SA, Griffey RH (2000) Mass spectrometry as a drug discovery platform against RNA targets. Curr Opin Drug Discov Devel 3(4):423–431

    CAS  Google Scholar 

  20. Silvestri C, Brodbelt JS (2012) Tandem mass spectrometry for characterization of covalent adducts of DNA with anticancer therapeutics. Mass Spectrom Rev 32:247–266

    Article  Google Scholar 

  21. Haq I, Jenkins TC, Chowdhry BZ, Ren J, Chaires JB (2000) Parsing free energies of Drug-DNA interactions. Methods Enzymol 323:373–405

    Article  CAS  Google Scholar 

  22. Haq I, Ladbury J (2000) Drug-DNA recognition: energetics and implications for design. J Mol Recognit 13:188–197

    Article  CAS  Google Scholar 

  23. Eriksson M, Norden B (2001) Linear and circular dichroism of drug-nucleic acids complexes. Methods Enzymol 340:68–98

    Article  CAS  Google Scholar 

  24. Lane AN (2001) Nuclear magnetic resonance studies of drug-DNA coplexes in solution. Methods Enzymol 340:252–281

    Article  CAS  Google Scholar 

  25. Peek ME, Williams LD (2001) X-Ray crystallography of drug-DNA complexes. Methods Enzymol 340:282–289

    Article  CAS  Google Scholar 

  26. Lilley DMJ (1992) Probes of DNA structure. Methods Enzymol 212:133–139

    Article  CAS  Google Scholar 

  27. Fox KR, Waring MJ (2001) High-resolution footprinting studies of drug-DNA complexes using chemical and enzymatic probes. Methods Enzymol 340:412–430

    Article  CAS  Google Scholar 

  28. Gale DC, Smith RD (1995) Characterization of noncovalent complexes formed between minor groove binding molecules and duplex DNA by electrospray ionization-mass spectrometry. J Am Soc Mass Spectrom 6:1154–1164

    Article  CAS  Google Scholar 

  29. Gale DC, Goodlett DR, Light-Wahl KJ, Smith RD (1994) Observation of duplex DNA-drug noncovalent complexes by electrospray ionization mass spectrometry. J Am Chem Soc 116:6027–6028

    Article  CAS  Google Scholar 

  30. Kapur A, Beck JL, Sheil MM (1999) Observation of daunomycin and nogalamycin complexes with duplex DNA using electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 13:2489–2497

    Article  CAS  Google Scholar 

  31. Gabelica V, De Pauw E, Rosu F (1999) Interaction between antitumor drugs and a double-stranded oligonucleotide studied by electrospray ionization mass spectrometry. J Mass Spectrom 34:1328–1337

    Article  CAS  Google Scholar 

  32. Wan KX, Shibue T, Gross ML (2000) Noncovalent complexes between DNA-binding drugs and double-stranded oligodeoxynucleotides: a study by ESI ion-trap mass spectrometry. J Am Chem Soc 122:300–307

    Article  CAS  Google Scholar 

  33. Colgrave ML, Beck JL, Sheil MM, Searle MS (2002) C electrospray ionisation mass spectrometric detection of weak noncovalent interactions in nogalamycin-DNA complexes. Chem Commun: 556–557

    Google Scholar 

  34. Gupta R, Beck JL, Ralph SF, Sheil MM, Aldrich-Wright JR (2004) Comparison of the binding stoichiometries of positively charged DNA-binding drugs using positive and negative ion electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 15:1382–1391

    Article  CAS  Google Scholar 

  35. Chen WH, Chan CL, Cai Z, Luo GA, Jiang ZH (2004) Study on noncovalent complexes of cytotoxic protoberbine alkaloids with double-stranded DNA by using electrospray ionization mass spectrometry. Bioorg Med Lett 14:4955–4959

    Article  CAS  Google Scholar 

  36. Chen WH, Quin Y, Cai Z, Chan CL, Luo GA, Jiang ZH (2005) Spectrometric studies of cytotoxic protoberberine alkaloids binding to double-stranded DNA. Bioorg Med Chem 13:1859–1866

    Article  CAS  Google Scholar 

  37. Rosu F, Pirotte S, DePauw E, Gabelica V (2006) Positive and negative ion mode ESI-MS and MS/MS for studying drug-DNA complexes. Int J Mass Spectrom 253(3):156–171

    Article  CAS  Google Scholar 

  38. Mazzitelli CL, Chu Y, Reczek JJ, Iverson BL, Brodbelt JS (2007) Screening of threading Bis-intercalators binding to duplex DNA by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 18:311–321

    Article  CAS  Google Scholar 

  39. Smith SI, Guziec LJ, Guziec FS, Hasinoff BB, Brodbelt JS (2007) Evaluation of relative DNA binding affinities of anthrapyrazoles by electrospray ionization mass spectrometry. J Mass Spectrom 42:681–688

    Article  CAS  Google Scholar 

  40. Rosu F, Gabelica V, DePauw E, Mailliet P, Mergny J-L (2008) Cooperative 2:1 binding of a bisphenothiazine to duplex DNA. ChemBioChem 9(6):849–852

    Article  CAS  Google Scholar 

  41. Wang Z, Cui M, Song F, Lu L, Liu Z, Liu S (2008) Evaluation of flavonoids binding to DNA duplexes by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 19:914–922

    Article  CAS  Google Scholar 

  42. Wang Z, Guo X, Liu Z, Cui M, Song F, Liu S (2008) Studies on alkaloids binding to GC-rich human survivin promoter DNA using positive and negative ion electrospray ionization mass spectrometry. J Mass Spectrom 43:327–335

    Article  CAS  Google Scholar 

  43. Kelso C, Tillott V, Rojas JD, Furlan RLA, Padilla G, Beck JL (2008) Mass spectrometric investigation of the DNA-binding properties of an anthracycline with two trisaccharide chains. Arch Biochem Biophys 477:348–355

    Article  CAS  Google Scholar 

  44. Smith S, Guziec FS, Guziec L, Brodbelt JS (2009) Interactions of sulfur-containing acridine ligands with DNA by ESI-MS. Analyst 134:2058–2066

    Article  CAS  Google Scholar 

  45. Sirtori FR, Aldini G, Colombo M, Colombo N, Malyszko J, Vistoli G, D’Alessio R (2012) Molecular recognition of T:G mismatched base pairs in DNA as studied by electrospray ionization mass spectrometry. ChemMedChem 7:1112–1122

    Article  Google Scholar 

  46. Smith SI, Brodbelt JS (2010) Rapid characterization of cross-links, mono-adducts, and noncovalent binding of psoralens to deoxyoligonucleotides by LC—UV/ESI-MS and IRMPD mass spectrometry. Analyst 135(5):943–952

    Article  CAS  Google Scholar 

  47. Rosu F, Gabelica V, Houssier C, De Pauw E (2002) Determination of affinity, stoichiometry and sequence selectivity of minor groove binder complexes with double-stranded oligodeoxynucleotides by electrospray ionization mass spectrometry. Nucleic Acids Res 30:e82/1–e82/9

    Article  CAS  Google Scholar 

  48. Buchmann W, Boutorine A, Halby L, Tortajada J, De Pauw E (2009) A new method for the determination of the relative affinity of a ligand against various DNA sequences by electrospray ionization mass spectrometry. Application to a polyamide minor groove binder. J Mass Spectrom 44:1171–1181

    Article  CAS  Google Scholar 

  49. Gabelica V, Galic N, Rosu F, Houssier C, De Pauw E (2003) Influence of response factors on determining equilibrium association constants of noncovalent complexes by electrospray ionization mass spectrometry. J Mass Spectrom 38:491–501

    Article  CAS  Google Scholar 

  50. Gabelica V, Rosu F, De Pauw E (2009) A simple method to determine electrospray response factors of noncovalent complexes. Anal Chem 81:6708–6715

    Article  CAS  Google Scholar 

  51. Reyzer ML, Brodbelt JS, Kerwin SM, Kumar D (2001) Evaluation of complexation of metal-mediated DNA-binding drugs to oligonucleotides via electrospray ionization mass spectrometry. Nucleic Acids Res 29:e103/1–e103/12

    Article  CAS  Google Scholar 

  52. Beck JL, Gupta R, Urathamakul T, Williamson NL, Sheil MM, Aldrich-Wright JR, Ralph SF (2003) Probing DNA selectivity of ruthenium metallointercalators using ESI mass spectrometry. Chem Commun: 626–627

    Google Scholar 

  53. Urathamakul T, Beck JL, Sheil MM, Aldrich-Wright JR, Ralph SF (2004) Comparison of mass spectrometry and other techniques for probing interactions between metal complexes and DNA. Dalton Trans 17:2683–2690

    Article  Google Scholar 

  54. Ramos CIV, Barros CM, Fernandes AM, Santana-Marques MG, Ferrer Correia AJ et al (2005) Interactions of cationic porphyrins with double-stranded oligodeoxynucleotides: a study by electrospray ionisation mass spectrometry. J Mass Spectrom 40:1439–1447

    Article  CAS  Google Scholar 

  55. Oehlers L, Mazzitelli CL, Brodbelt JS, Rodriguez M, Kerwin S (2004) Evaluation of complexes of DNA duplexes and novel benzoxazoles or benzimidazoles by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 15:1593–1603

    Article  CAS  Google Scholar 

  56. Mazzitelli CL, Rodriguez M, Kerwin SM, Brodbelt JS (2008) Evaluation of metal-mediated DNA binding of benzoxazole ligands by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 19:209–218

    Article  CAS  Google Scholar 

  57. Urathamakul T, Waller DJ, Beck JL, Aldrich-Wright JR, Ralph SF (2008) Comparison of mass spectrometry and other techniques for probing interactions between metal complexes and DNA. Inorg Chem 47(15):6621–6632

    Article  CAS  Google Scholar 

  58. Talib J, Harman DG, Dillon CT, Aldrich-Wright J, Beck JL, Ralph SF (2009) Does the metal influence noncovalent binding of complexes to DNA? Dalton Trans 3:504–513

    Article  Google Scholar 

  59. Rosu F, Gabelica V, Smargiasso N, Mazzucchelli G, Shin-Ya G, De Pauw W (2010) Cation involvement in telomestatin binding to G-quadruplex DNA. J Nucleic Acids 2010:121259

    Article  Google Scholar 

  60. Schilter D, Urathamakul T, Beck JL, Harding MM, Rendina LM (2010) ESI-MS and thermal melting studies of nanoscale platinum (II) metallomacrocycles with DNA. Dalton Trans 39(46):11263–11271

    Article  CAS  Google Scholar 

  61. David WM, Brodbelt JS, Kerwin SM, Thomas PW (2002) Investigation of quadruplex oligonucleotide-drug interactions by electrospray ionization mass spectrometry. Anal Chem 74:2029–2033

    Article  CAS  Google Scholar 

  62. Carrasco C, Rosu F, Gabelica F, Houssier C, De Pauw E, Garbay-Jaureguidberry C et al (2002) Tight binding of the antitumor drug ditercalinium to quadruplex DNA. Chembiochem 3:1235–1241

    Article  CAS  Google Scholar 

  63. Rosu F, De Pauw E, Guittat L, Alberti P, Lacroix L, Mailliet P, Riou JF, Mergny JL (2003) Selective interaction of ethidium derivatives with quadruplexes: an equilibrium dialysis and electrospray ionization mass spectrometry analysis. Biochemistry 42:10361–10371

    Article  CAS  Google Scholar 

  64. Pothukuchy A, Mazzitelli C, Salazar M, Brodbelt JS, Kerwin SM (2005) Duplex and quadruplex DNA binding and photocleavage by trioxatriangulenium ion. Biochemistry 44:2163–2172

    Article  CAS  Google Scholar 

  65. Mazzitelli CL, Brodbelt JS, Kern JT, Rodriguez M, Kerwin SM (2006) Evaluation of binding of perylene diimide and benzannulated perylene diimide ligands to DNA by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 17:593–604

    Article  CAS  Google Scholar 

  66. Gornall KC, Samosorn S, Talib J, Bremner JB, Beck JL (2007) Selectivity of an indolyl berberine derivative for tetrameric G-quadruplex DNA. Rapid Commun Mass Spectrom 21:1759–1766

    Article  CAS  Google Scholar 

  67. Mazzitelli CL, Wang J, Smith JI, Brodbelt JS (2007) Gas-phase stability of G-quadruplex DNA determined by electrospray ionization tandem mass spectrometry and molecular dynamics simulations. J Am Soc Mass Spectrom 18:1760–1773

    Article  CAS  Google Scholar 

  68. Gornall KC, Samosorn S, Talib J, Samorsorn S, Tanwirat B, Suksamrarn A, Bremner JB, Kelso MJ, Beck JL (2010) A mass spectrometric investigation of novel quadruplex DNA-selective berberine derivatives. Chem Commun 46:6602–6604

    Article  CAS  Google Scholar 

  69. Talib J, Green C, Davis KJ, Urathamakul T, Beck JL, Aldrich-Wright JR, Ralph SF (2008) A Comparison of the binding of metal complexes to duplex and quadruplex DNA. Dalton Trans: 1018–1026

    Google Scholar 

  70. Collie G, Reszka AP, Haider SM, Gabelica V, Parkinson GN, Neidle S (2009) Selectivity in small molecule binding to human telomeric RNA and DNA quadruplexes. Chem Commun: 7482–7484

    Google Scholar 

  71. Pierce SE, Kieltyka R, Sleiman HF, Brodbelt JS (2009) Evaluation of binding selectivities and affinities of platinum-based quadruplex interactive complexes by electrospray ionization mass spectrometry. Biopolymers 91:233–243

    Article  CAS  Google Scholar 

  72. Casagrande V, Antonello A, Armandodorianao B, Ortaggi G, Franceschin M (2009) Study of binding affinity and selectivity of perylene and coronene derivatives towards duplex and quadruplex DNA by ESI-MS. J Mass Spectrom 44:530–540

    Article  CAS  Google Scholar 

  73. Lombardo CM, Martinez IS, Haider S, Gabelica V, De Pauw E, Moses JE, Neidle S (2010) Structure-based design of selective high-affinity telomeric quadruplex-binding ligands. Chem Commun 46(48):9116–9118

    Article  CAS  Google Scholar 

  74. Liu Y, Zheng B, Xu X, Yan G (2010) Probing the binding affinity of small molecule natural products to the G-quadruplex in C-myc oncogene by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 24:3072–3075

    Article  Google Scholar 

  75. Largy E, Hamon F, Rosu F, Gabelica V, De Pauw E, Guedin A, Mergny J-L, Teulade-Fichou M-P (2011) Tridentate N-donor palladium (II) complexes as efficiency coordinating quadruplex DNA binders. Chem Eur J 17:13274–13283

    Article  CAS  Google Scholar 

  76. Waring MJ (1986) Overview of the interaction between chemotherapeutic agents and DNA. Drugs Exp Clin Res 12:441–453

    CAS  Google Scholar 

  77. Chaney SG, Sancar A (1996) DNA repair: enzymatic mechanisms and relevance to drug response. J Natl Cancer Inst 88:1346–1360

    Article  CAS  Google Scholar 

  78. Tomasz M, Palom Y (1997) The mitomycin bioreductive antitumor agents: cross-linking and alkylation of DNA as the molecular basis of their activity. Pharmacol Ther 76:73–87

    Article  CAS  Google Scholar 

  79. Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18–30

    Article  CAS  Google Scholar 

  80. Nicolaou KC, Dai W‐M (1991) Chemistry and biology of the enediyne anticancer antibiotics. Angew Chem Int Ed Engl 30:1387–1416

    Article  Google Scholar 

  81. Colvin M, Brundrett RB, Kan M-NN, Jardine I, Fenselau C (1976) Alkylating properties of phosphoramide mustard. Cancer Res 36:1121–1126

    CAS  Google Scholar 

  82. Phillips DH, Carmichael PL, Hewer A, Cole KJ, Poon GK (1994) α-Hydroxytamoxifen, a metabolite of tamoxifen with exceptionally high DNA-binding activity in rat hepatocytes. Cancer Res 54:5518–5522

    CAS  Google Scholar 

  83. Sherman SE, Lippard SJ (1987) Structural aspects of platinum anticancer drug interactions with DNA. Chem Rev 87:1153–1181

    Article  CAS  Google Scholar 

  84. Reedijk J (1987) The mechanism of action of platinum anti-tumor drugs. Pure Appl Chem 59:181–192

    Article  CAS  Google Scholar 

  85. Wickham G, Iannitti P, Boschenok J, Sheil MM (1995) Electrospray ionization mass spectrometry of covalent ligand-oligonucleotide adducts: evidence for specific duplex ion formation. Rapid Commun Mass Spectrom S197:203

    Google Scholar 

  86. Rahman KM, James CH, Thurston DE (2011) Effect of base sequence on the DNA cross-linking properties of pyrrolobenzodiazepine (PBD) dimers. Nucleic Acids Res 39:5800–5812

    Article  CAS  Google Scholar 

  87. Lippert B (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. VHCA &Wiley-VCH, Zurich

    Book  Google Scholar 

  88. Iannitti-Tito P, Weimann A, Wickham G, Sheil MM (2000) Structural analysis of drug-DNA adducts by tandem mass spectrometry. Analyst 125(4):627

    Article  CAS  Google Scholar 

  89. Egger AE, Hartinger CG, Ben Hamidane H, Tsybin YO, Keppler BK, Dyson PJ (2008) High resolution mass spectrometry for studying the interactions of cisplatin with oligonucleotides. Inorg Chem 47(22):10626

    Article  CAS  Google Scholar 

  90. Nyakas A, Eymann M, Schuerch S (2009) The influence of cisplatin on the gas-phase dissociation of oligonucleotides studied by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 20(5):792

    Article  CAS  Google Scholar 

  91. Xu Z, Shaw JB, Brodbelt JS (2012) Comparison of MS/MS methods for characterization of DNA/cis-platin adducts. J Am Soc Mass Spectrom 24:265–272

    Article  Google Scholar 

  92. Hofstadler SA, Sannes-Lowery KA, Crooke ST, Ecker DJ, Sasmor H, Manalili S, Griffey RH (1999) Multiplexed screening of neutral mass-tagged rna targets against ligand libraries with electrospray ionization FTICR MS: a paradigm for high-throughput affinity screening. Anal Chem 71:3436–3440

    Article  CAS  Google Scholar 

  93. Sannes-Lowery KA, Hu P, Mack DP, Mei HY, Loo JA (1997) HIV-1 Tat peptide binding to TAR RNA by electrospray ionization mass spectrometry. Anal Chem 69:5130–5135

    Article  CAS  Google Scholar 

  94. Griffey RH, Hofstadler SA, Sannes-Lowery KA, Ecker DJ, Crooke ST (1999) Determinants of aminoglycoside-binding specificity for rRNA by using mass spectrometry. Proc Natl Acad Sci USA 96:10129–10133

    Article  CAS  Google Scholar 

  95. Griffey RH, Sannes-Lowery KA, Drader JJ, Mohan V, Swayze EE, Hofstadler SA (2000) Characterization of low-affinity complexes between RNA and small molecules using electrospray ionization mass spectrometry. J Am Chem Soc 122:9933–9938

    Article  CAS  Google Scholar 

  96. Cummins LL, Chen S, Blyn LB, Sannes-Lowery KA, Drader JJ, Griffey RH, Hofstadler SA (2003) Multitarget affinity/specificity screening of natural products: finding and characterizing high-affinity ligands from complex mixtures by using high performance mass spectrometry. J Nat Prod 66:1186–1190

    Article  CAS  Google Scholar 

  97. Sannes-Lowery KA, Cummins LL, Chen S, Drader JJ, Hofstadler SA (2004) High throughput drug discovery with ESI-FTICR. Int J Mass Spectrom 238:197–206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Robert A. Welch Foundation (F-1155) and the National Institutes of Health (RO1 GM65956).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Brodbelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brodbelt, J.S., Xu, Z. (2014). Ligand Binding to Nucleic Acids. In: Gabelica, V. (eds) Nucleic Acids in the Gas Phase. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54842-0_9

Download citation

Publish with us

Policies and ethics