Skip to main content

Gas-Phase Spectroscopy of Nucleic Acids

  • Chapter
  • First Online:
Book cover Nucleic Acids in the Gas Phase

Part of the book series: Physical Chemistry in Action ((PCIA))

Abstract

We describe here frequency-resolved gas-phase spectroscopy of nucleic acids. Frequency resolved means that the effect of photons on the nucleic acid molecules is measured as a function of the photon frequency. The present chapter is primarily focused on experimental aspects, and intended as a compass to navigate a rather interdisciplinary field. Indeed, gas-phase spectroscopy usually combines photonics, mass spectrometry (when ions are detected), and theoretical chemistry. Although theory is of prime importance for the interpretation of the results, as it is the comparison between experimental and theoretical energies of the resonance transitions that allow the structural interpretation of the experimental spectra, extended discussion of theory levels will not be provided here, but relevant literature will be indicated along the text. We will cover rotational, vibrational, and electronic spectroscopy from isolated nucleobases to oligonucleotides and nucleic acid higher-order structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD:

Circular dichroism

CID:

Collision-induced dissociation

CLIO:

Centre Laser Infrarouge d’Orsay

FELIX:

Free-Electron Lasers for Infrared eXperiments

FTICRMS:

Fourier transform ion cyclotron resonance mass spectrometry

IC:

Internal conversion

IP:

Ionization potential

IR:

Infrared

IRMPD:

Infrared multiple photon dissociation

IR-UV:

Infrared-ultraviolet double resonance spectroscopy

IVR:

Intramolecular vibrational energy redistribution

LA-MB-FTMW:

Laser ablation molecular beam Fourier transform microwave spectroscopy

LIF:

Laser-induced fluorescence

NMR:

Nuclear magnetic resonance

PD:

Photodissociation

R1PI:

Resonance-enhanced single-photon ionization

R2PI:

Resonance-enhanced two-photon ionization

REMPI:

Resonance-enhanced multiphoton ionization

S 0 :

Electronic ground state

S 1 :

First electronically excited state

UV:

Ultraviolet

UVMPD:

Ultraviolet multiple photon dissociation

UV-UV:

Ultraviolet–ultraviolet double resonance spectroscopy

Vis:

Visible

VUV:

Vacuum ultraviolet

References

  1. Taillandier E, Liquier J (1992) Infrared spectroscopy of DNA. Methods Enzymol 211:307–335

    Article  CAS  Google Scholar 

  2. Tataurov AV, You Y, Owczarzy R (2008) Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophys Chem 133:66–70

    Article  CAS  Google Scholar 

  3. Clark LB, Peschel GG, Tinoco I Jr (1965) Vapor spectra and heats of vaporization of some purine and pyrimidine bases. J Phys Chem 69:3615–3618

    Article  CAS  Google Scholar 

  4. Kleinermanns K, Nachtigallová D, de Vries MS (2013) Excited state dynamics of DNA bases. Int Rev Phys Chem 32:308–342

    Article  CAS  Google Scholar 

  5. Vaya I, Gustavsson T, Miannay FA, Douki T, Markovitsi D (2010) Fluorescence of natural DNA: from the femtosecond to the nanosecond time scales. J Am Chem Soc 132:11834–11835

    Article  CAS  Google Scholar 

  6. de Vries MS, Hobza P (2007) Gas-phase spectroscopy of biomolecular building blocks. Annu Rev Phys Chem 58:585–612

    Article  Google Scholar 

  7. Belau L, Wilson KR, Leone SR, Ahmed M (2007) Vacuum-ultraviolet photoionization studies of the microhydration of DNA bases (guanine, cytosine, adenine, and thymine). J Phys Chem A 111:7562–7568

    Article  CAS  Google Scholar 

  8. Yang X, Wang XB, Vorpagel ER, Wang LS (2004) Direct experimental observation of the low ionization potentials of guanine in free oligonucleotides by using photoelectron spectroscopy. Proc Natl Acad Sci USA 101:17588–17592

    Article  CAS  Google Scholar 

  9. Danell AS, Parks JH (2003) Fraying and electron autodetachment dynamics of trapped gas phase oligonucleotides. J Am Soc Mass Spectrom 14:1330–1339

    Article  CAS  Google Scholar 

  10. Weber JM, Ioffe IN, Berndt KM, Loffler D, Friedrich J, Ehrler OT, Danell AS, Parks JH, Kappes MM (2004) Photoelectron spectroscopy of isolated multiply negatively charged oligonucleotides. J Am Chem Soc 126:8585–8589

    Article  CAS  Google Scholar 

  11. Nagornova NS, Guglielmi M, Doemer M, Tavernelli I, Rothlisberger U, Rizzo TR, Boyarkin OV (2011) Cold-ion spectroscopy reveals the intrinsic structure of a decapeptide. Angew Chem Int Ed Engl 50:5383–5386

    Article  CAS  Google Scholar 

  12. Nagornova NS, Rizzo TR, Boyarkin OV (2010) Highly resolved spectra of gas-phase Gramicidin S: a benchmark for peptide structure calculations. J Am Chem Soc 132:4040

    Article  CAS  Google Scholar 

  13. Stearns JA, Seaiby C, Boyarkin OV, Rizzo TR (2009) Spectroscopy and conformational preferences of gas-phase helices. Phys Chem Chem Phys 11:125–132

    Article  CAS  Google Scholar 

  14. Rodriguez JD, Lisy JM (2009) Infrared spectroscopy of multiply charged metal ions: methanol-solvated divalent manganese 18-crown-6 ether systems. J Phys Chem A 113:6462–6467

    Article  CAS  Google Scholar 

  15. Garand E, Kamrath MZ, Jordan PA, Wolk AB, Leavitt CM, McCoy AB, Miller SJ, Johnson MA (2012) Determination of noncovalent docking by infrared spectroscopy of cold gas-phase complexes. Science 335:694–698

    Article  CAS  Google Scholar 

  16. Bierau F, Kupser P, Meijer G, von Helden G (2010) Catching proteins in liquid helium droplets. Phys Rev Lett 105:133402

    Article  Google Scholar 

  17. Choi MY, Miller RE (2006) Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. J Am Chem Soc 128:7320–7328

    Article  CAS  Google Scholar 

  18. Shukla MK, Leszczynski J (2013) Tautomerism in nucleic acid bases and base pairs: a brief overview. Comput Mol Sci 3:637–649

    Article  CAS  Google Scholar 

  19. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2001) Guanine tautomerism revealed by UV–UV and IR–UV hole burning spectroscopy. J Chem Phys 115:4604

    Article  CAS  Google Scholar 

  20. Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J (2006) Near-UV resonant two-photon ionization spectroscopy of gas phase guanine: evidence for the observation of three rare tautomers. J Phys Chem A 110:10921–10924

    Article  CAS  Google Scholar 

  21. Abo-riziq A, Crews BO, Compagnon I, Oomens J, Meijer G, Von Helden G, Kabelac M, Hobza P, de Vries MS (2007) The mid-IR spectra of 9-ethyl guanine, guanosine, and 2-deoxyguanosine. J Phys Chem A 111:7529–7536

    Article  CAS  Google Scholar 

  22. Crespo-Hernandez CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104:1977–2019

    Article  CAS  Google Scholar 

  23. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernandez CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem 60:217–239

    Article  CAS  Google Scholar 

  24. Alonso JL, Pena I, Lopez JC, Vaquero V (2009) Rotational spectral signatures of four tautomers of guanine. Angew Chem Int Ed Engl 48:6141–6143

    Article  CAS  Google Scholar 

  25. Alonso JL, Vaquero V, Pena I, Lopez JC, Mata S, Caminati W (2013) All five forms of cytosine revealed in the gas phase. Angew Chem Int Ed Engl 52:2331–2334

    Article  CAS  Google Scholar 

  26. Lopez JC, Pena MI, Sanz ME, Alonso JL (2007) Probing thymine with laser ablation molecular beam Fourier transform microwave spectroscopy. J Chem Phys 126:191103

    Article  Google Scholar 

  27. Vaquero V, Sanz ME, Lopez JC, Alonso JL (2007) The structure of uracil: a laser ablation rotational study. J Phys Chem A 111:3443–3445

    Article  CAS  Google Scholar 

  28. Nir E, Plützer C, Kleinermanns K, de Vries M (2002) Properties of isolated DNA bases, base pairs and nucleosides examined by laser spectroscopy. Eur Phys J D 20:317–329

    Article  CAS  Google Scholar 

  29. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993

    Article  CAS  Google Scholar 

  30. Kabelac M, Hobza P (2007) Hydration and stability of nucleic acid bases and base pairs. Phys Chem Chem Phys 9:903–917

    Article  CAS  Google Scholar 

  31. Kabelac M, Plutzer C, Kleinermanns K, Hobza P (2004) Isomer selective IR experiments and correlated ab initio quantum chemical calculations support planar H-bonded structure of the 7-methyl adenine?adenine and stacked structure of the 9-methyl adenine?adenine base pairs. Phys Chem Chem Phys 6:2781

    Article  CAS  Google Scholar 

  32. Nir E, Kleinermanns K, de Vries MS (2000) Pairing of isolated nucleic-acid bases in the absence of the DNA backbone. Nature 408:949–951

    Article  CAS  Google Scholar 

  33. Sobolewski AL, Domcke W, Hattig C (2005) Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes. Proc Natl Acad Sci USA 102:17903–17906

    Google Scholar 

  34. Plutzer C, Hunig I, Kleinermanns K, Nir E, de Vries MS (2003) Pairing of isolated nucleobases: double resonance laser spectroscopy of adenine-thymine. Chemphyschem 4:838–842

    Article  Google Scholar 

  35. Salpin JY, Guillaumont S, Tortajada J, MacAleese L, Lemaire J, Maitre P (2007) Infrared spectra of protonated uracil, thymine and cytosine. Chemphyschem 8:2235–2244

    Article  CAS  Google Scholar 

  36. Bakker JM, Sinha RK, Besson T, Brugnara M, Tosi P, Salpin JY, Maitre P (2008) Tautomerism of uracil probed via infrared spectroscopy of singly hydrated protonated uracil. J Phys Chem A 112(48):12393–12400

    Article  CAS  Google Scholar 

  37. Bakker JM, Salpin J-Y, Maître P (2009) Tautomerism of cytosine probed by gas phase IR spectroscopy. Int J Mass Spectrom 283:214–221

    Article  CAS  Google Scholar 

  38. Yang B, Wu RR, Berden G, Oomens J, Rodgers MT (2013) Infrared multiple photon dissociation action spectroscopy of proton-bound dimers of cytosine and modified cytosines: effects of modifications on gas-phase conformations. J Phys Chem B 117(46):14191–201

    Article  CAS  Google Scholar 

  39. Nei YW, Hallowita N, Steill JD, Oomens J, Rodgers MT (2013) Infrared multiple photon dissociation action spectroscopy of deprotonated DNA mononucleotides: gas-phase conformations and energetics. J Phys Chem A 117:1319–1335

    Article  CAS  Google Scholar 

  40. Nei YW, Crampton KT, Berden G, Oomens J, Rodgers MT (2013) Infrared multiple photon dissociation action spectroscopy of deprotonated RNA mononucleotides: gas-phase conformations and energetics. J Phys Chem A 117:10634–10649

    Article  CAS  Google Scholar 

  41. Rosu F, Gabelica V, Joly L, Gregoire G, De Pauw E (2010) Zwitterionic i-motif structures are preserved in DNA negatively charged ions produced by electrospray mass spectrometry. Phys Chem Chem Phys 12:13448–13454

    Article  CAS  Google Scholar 

  42. Gabelica V, Rosu F, De Pauw E, Lemaire J, Gillet JC, Poully JC, Lecomte F, Gregoire G, Schermann JP, Desfrancois C (2008) Infrared signature of DNA G-quadruplexes in the gas phase. J Am Chem Soc 130:1810–1811

    Article  CAS  Google Scholar 

  43. Marian C, Nolting D, Weinkauf R (2005) The electronic spectrum of protonated adenine: theory and experiment. Phys Chem Chem Phys 7:3306–3316

    Article  CAS  Google Scholar 

  44. Pedersen SO, Stochkel K, Byskov CS, Baggesen LM, Nielsen SB (2013) Gas-phase spectroscopy of protonated adenine, adenosine 5'-monophosphate and monohydrated ions. Phys Chem Chem Phys 15:19748–19752

    Article  CAS  Google Scholar 

  45. Cheong NR, Nam SH, Park HS, Ryu S, Song JK, Park SM, Perot M, Lucas B, Barat M, Fayeton JA et al (2011) Photofragmentation in selected tautomers of protonated adenine. Phys Chem Chem Phys 13:291–295

    Article  CAS  Google Scholar 

  46. Marcum JC, Halevi A, Weber JM (2009) Photodamage to isolated mononucleotides–photodissociation spectra and fragment channels. Phys Chem Chem Phys 11:1740–1751

    Article  CAS  Google Scholar 

  47. Marcum JC, Kaufman SH, Weber JM (2011) UV-photodissociation of non-cyclic and cyclic mononucleotides. Int J Mass Spectrom 303:129–136

    Article  CAS  Google Scholar 

  48. Nielsen LM, Pedersen SO, Kirketerp MB, Nielsen SB (2012) Absorption by DNA single strands of adenine isolated in vacuo: the role of multiple chromophores. J Chem Phys 136:064302

    Article  Google Scholar 

  49. Gabelica V, Rosu F, De Pauw E, Antoine R, Tabarin T, Broyer M, Dugourd P (2007) Electron photodetachment dissociation of DNA anions with covalently or noncovalently bound chromophores. J Am Soc Mass Spectrom 18:1990–2000

    Article  CAS  Google Scholar 

  50. Gabelica V, Tabarin T, Antoine R, Rosu F, Compagnon I, Broyer M, De Pauw E, Dugourd P (2006) Electron photodetachment dissociation of DNA polyanions in a quadrupole ion trap mass spectrometer. Anal Chem 78:6564–6572

    Article  CAS  Google Scholar 

  51. Rosu F, Gabelica V, De Pauw E, Antoine R, Broyer M, Dugourd P (2012) UV spectroscopy of DNA duplex and quadruplex structures in the gas phase. J Phys Chem A 116:5383–5391

    Article  CAS  Google Scholar 

  52. Dao NT, Haselsberger R, Michel-Beyerle ME, Phan AT (2013) Excimer formation by stacking g-quadruplex blocks. Chemphyschem 14:2667–2671

    Article  CAS  Google Scholar 

  53. Chingin K, Chen H, Gamez G, Zenobi R (2009) Exploring fluorescence and fragmentation of ions produced by electrospray ionization in ultrahigh vacuum. J Am Soc Mass Spectrom 20:1731–1738

    Article  CAS  Google Scholar 

  54. Bian QZ, Forbes MW, Talbot FO, Jockusch RA (2010) Gas-phase fluorescence excitation and emission spectroscopy of mass-selected trapped molecular ions. Phys Chem Chem Phys 12:2590–2598

    Article  CAS  Google Scholar 

  55. Talbot FO, Rullo A, Yao H, Jockusch RA (2010) Fluorescence resonance energy transfer in gaseous, mass-selected polyproline peptides. J Am Chem Soc 132:16156–16164

    Article  CAS  Google Scholar 

  56. Danell AS, Parks JH (2003) FRET measurements of trapped oligonucleotide duplexes. Int J Mass Spectrom 229:35–45

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Gabelica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gabelica, V., Rosu, F. (2014). Gas-Phase Spectroscopy of Nucleic Acids. In: Gabelica, V. (eds) Nucleic Acids in the Gas Phase. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54842-0_5

Download citation

Publish with us

Policies and ethics