Advertisement

Introduction: Nucleic Acids Structure, Function, and Why Studying Them In Vacuo

  • Valérie Gabelica
Chapter
Part of the Physical Chemistry in Action book series (PCIA)

Abstract

This introductory chapter sets the stage for the various methods and application that will be described in the book “Nucleic acids in the gas phase.” Using key review articles as references, nucleic acid structures are introduced, with progression from primary structure to the main secondary, tertiary, and quaternary structures of DNA and RNA. Nucleic acid function is also overviewed, from the roles of natural nucleic acids in biology to those of artificial nucleic acids in the biotechnology, biomedical, or nanotechnology fields. Importantly, the question of why studying nucleic acids in the gas phase is addressed from three different points of view. First, because isolated molecules in vacuo cannot exchange energy with their surroundings, reactivity can be studied in well-defined energetic conditions. Second, isolating molecules from their solvent and environment allow to study their intrinsic properties. Finally, the rapidly expanding field of mass spectrometry, an intrinsically gas-phase analysis method, calls for better understanding of ion structure and reactivity in vacuo.

Keywords

Gas phase Mass spectrometry Ionization Oligonucleotide Primary structure Secondary structure Double helix Watson–Crick Triplex G-quadruplex Sequencing Conformation DNA RNA Biotechnology Nanotechnology Solvent effect Desolvation Biology 

Abbreviations

A

Adenine

BIRD

Blackbody infrared radiation-induced dissociation

bp

Base pair

C

Cytosine

DNA

Deoxyribonucleic acid

FDA

Food and Drug Adminstration

G

Guanine

G4-DNA

G-quadruplex DNA

IR

Infrared

LNA

Locked nucleic acid

miRNA

Micro RNA

mRNA

Messenger RNA

MS

Mass spectrometry

MS/MS

Tandem mass spectrometry

ncRNA

Noncoding RNA

NMR

Nuclear magnetic resonance

nt

Nucleotide

ODN

Oligodeoxynucleotide

PDB

Protein data bank

PNA

Peptide nucleic acid

RNA

Ribonucleic acid

ROS

Reactive oxygen species

rRNA

Ribosomal RNA

SASA

Solvent-accessible surface area

siRNA

Silencing RNA

T

Thymine

TFO

Triplex forming oligonucleotide

tRNA

Transfer RNA

U

Uracil

UV

Ultraviolet

VEGF

Vascular endothelial growth factor

References

  1. 1.
    Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G (2005) Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev 105:1869–1915CrossRefGoogle Scholar
  2. 2.
    Carell T, Brandmayr C, Hienzsch A, Muller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M (2012) Structure and function of noncanonical nucleobases. Angew Chem Int Ed Engl 51:7110–7131CrossRefGoogle Scholar
  3. 3.
    Dudley E, Bond L (2013) Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrom Rev. doi: 10.1002/mas.21388 Google Scholar
  4. 4.
    Grasby JA, Neidle S, Blackburn GM, Gait MJ, Loakes D, Williams DM, Egli M, Flavell M, Flavell A, Pyle AM et al (2006) In: Blackburn GM, Gait MJ, Loakes D, Williams DM (eds) Nucleic acids in chemistry and biology, 3rd edn. RSC Publishing, pp 13–76Google Scholar
  5. 5.
    Sponer J, Sponer JE, Mladek A, Jurecka P, Banas P, Otyepka M (2013) Nature and magnitude of aromatic base stacking in DNA and RNA: quantum chemistry, molecular mechanics, and experiment. Biopolymers 99:978–988Google Scholar
  6. 6.
    Turner DH (2013) Fundamental interactions in RNA: questions answered and remaining. Biopolymers 99:1097–1104Google Scholar
  7. 7.
    Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB (2008) The triple helix: 50 years later, the outcome. Nucleic Acids Res 36:5123–5138CrossRefGoogle Scholar
  8. 8.
    Davis JT (2004) G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed 43:668–698CrossRefGoogle Scholar
  9. 9.
    Gueron M, Leroy JL (2000) The i-motif in nucleic acids. Curr Opin Struct Biol 10:326–331CrossRefGoogle Scholar
  10. 10.
    Drew H, Wing R, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE (1981) Proc Natl Acad Sci USA:2179–2183Google Scholar
  11. 11.
    Radhakrishnan I, Patel DJ (1994) Solution structure of a pyrimidine-purine-pyrimidine DNA triplex containing T*AT, C+*GC and G*TA triples. Structure 2:17–32CrossRefGoogle Scholar
  12. 12.
    Creze C, Rinaldi B, Haser R, Bouvet P, Gouet P (2007) Structure of a d(TGGGGT) quadruplex crystallized in the presence of Li+ ions. Acta Crystallogr 63:682–688Google Scholar
  13. 13.
    Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG 3 (T 2 AG 3) 3] G-tetraplex. Structure 1:263–282CrossRefGoogle Scholar
  14. 14.
    Esmaili N, Leroy JL (2005) i-motif solution structure and dynamics of the d(AACCCC) and d(CCCCAA) tetrahymena telomeric repeats. Nucleic Acids Res 33:213–224CrossRefGoogle Scholar
  15. 15.
    Butcher SE, Pyle AM (2011) The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res 44:1302–1311CrossRefGoogle Scholar
  16. 16.
    Rostom AA, Fucini P, Benjamin DR, Juenemann R, Nierhaus KH, Hartl FU, Dobson CM, Robinson CV (2000) Detection and selective dissociation of intact ribosomes in a mass spectrometer. Proc Natl Acad Sci USA 97:5185–5190CrossRefGoogle Scholar
  17. 17.
    Kuhn-Holsken E, Dybkov O, Sander B, Luhrmann R, Urlaub H (2007) Improved identification of enriched peptide RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry. Nucleic Acids Res 35:e95CrossRefGoogle Scholar
  18. 18.
    Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 32:271–278CrossRefGoogle Scholar
  19. 19.
    De S, Michor F (2011) DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol 18:950–955CrossRefGoogle Scholar
  20. 20.
    Sarkies P, Reams C, Simpson LJ, Sale JE (2010) Epigenetic instability due to defective replication of structured DNA. Mol Cell 40:703–713CrossRefGoogle Scholar
  21. 21.
    Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952CrossRefGoogle Scholar
  22. 22.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefGoogle Scholar
  23. 23.
    Guil S, Esteller M (2012) Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol 19:1068–1075CrossRefGoogle Scholar
  24. 24.
    Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM (2012) Functional complexity and regulation through RNA dynamics. Nature 482:322–330CrossRefGoogle Scholar
  25. 25.
    Beaucage SL, Caruthers MH (1981) Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 22:1859–1862CrossRefGoogle Scholar
  26. 26.
    Francois JC, Lacoste J, Lacroix L, Mergny JL (2000) Design of antisense and triplex-forming oligonucleotides. Methods Enzymol 313:74–95CrossRefGoogle Scholar
  27. 27.
    Famulok M, Mayer G, Blind M (2000) Nucleic acid aptamers—from selection in vitro to applications in vivo. Acc Chem Res 33:591–599CrossRefGoogle Scholar
  28. 28.
    Ellington AD, Szostak JW (1990) In viro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  29. 29.
    Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132CrossRefGoogle Scholar
  30. 30.
    Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) Pna hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568CrossRefGoogle Scholar
  31. 31.
    Wengel J, Koshkin A, Singh SK, Nielsen P, Meldgaard M, Rajwanshi VK, Kumar R, Skouv J, Nielsen CB, Jacobsen JP et al (1999) LNA (locked nucleic acid). Nucleotides Nucleosides 18:1365–1370CrossRefGoogle Scholar
  32. 32.
    Sinkeldam RW, Greco NJ, Tor Y (2010) Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 110:2579–2619CrossRefGoogle Scholar
  33. 33.
    Rodrigo G, Landrain TE, Shen S, Jaramillo A (2013) A new frontier in synthetic biology: automated design of small RNA devices in bacteria. Trends Genet 29:529–536CrossRefGoogle Scholar
  34. 34.
    Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH et al (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344CrossRefGoogle Scholar
  35. 35.
    Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302CrossRefGoogle Scholar
  36. 36.
    Sacca B, Niemeyer CM (2012) DNA origami: the art of folding DNA. Angew Chem Int Ed Engl 51:58–66CrossRefGoogle Scholar
  37. 37.
    Wilner OI, Willner I (2012) Functionalized DNA nanostructures. Chem Rev 112:2528–2556CrossRefGoogle Scholar
  38. 38.
    Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed Engl 50:3124–3156CrossRefGoogle Scholar
  39. 39.
    Seeman NC (2005) From genes to machines: DNA nanomechanical devices. Trends Biochem Sci 30:119–125CrossRefGoogle Scholar
  40. 40.
    Tang Y, Ge B, Sen D, Yu HZ (2013) Functional DNA switches: rational design and electrochemical signaling. Chem Soc Rev 43:518–529CrossRefGoogle Scholar
  41. 41.
    Liu SP, Weisbrod SH, Tang Z, Marx A, Scheer E, Erbe A (2010) Direct measurement of electrical transport through G-quadruplex DNA with mechanically controllable break junction electrodes. Angew Chem Int Ed Engl 49:3313–3316CrossRefGoogle Scholar
  42. 42.
    Genereux JC, Barton JK (2010) Mechanisms for DNA charge transport. Chem Rev 110:1642–1662CrossRefGoogle Scholar
  43. 43.
    McLuckey SA, Goeringer DE (1997) Slow heating in tandem mass spectrometry. J Mass Spectrom 32:461–474CrossRefGoogle Scholar
  44. 44.
    Dunbar RC, McMahon TB (1998) Activation of unimolecular reactions by ambient blackbody radiation. Science 279:194–197CrossRefGoogle Scholar
  45. 45.
    Vékey K (1996) Internal energy effects in mass spectrometry. J Mass Spectrom 31:445–463CrossRefGoogle Scholar
  46. 46.
    Armentrout PB, Ervin KM, Rodgers MT (2008) Statistical rate theory and kinetic energy-resolved ion chemistry: theory and applications. J Phys Chem 112:10071–10085CrossRefGoogle Scholar
  47. 47.
    Dunbar RC (2004) BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications. Mass Spectrom Rev 23:127–158CrossRefGoogle Scholar
  48. 48.
    Rodgers MT, Armentrout PB (2000) Noncovalent interactions of nucleic acid bases (uracil, thymine, and adenine) with alkali metal ions. Threshold CID and theoretical studies. J Am Chem Soc 122:8548–8558CrossRefGoogle Scholar
  49. 49.
    Strittmatter EF, Schnier PD, Klassen JS, Williams ER (1999) Dissociation energies of deoxyribose nucleotide dimer anions measured using BIRD. J Am Soc Mass Spectrom 10:1095–1104CrossRefGoogle Scholar
  50. 50.
    Klassen JS, Schnier PD, Williams ER (1998) Blackbody infrared radiative dissociation of oligonucleotide anions. J Am Soc Mass Spectrom 9:1117–1124CrossRefGoogle Scholar
  51. 51.
    Auffinger P, Hashem Y (2007) Nucleic acid solvation: from outside to insight. Curr Opin Struct Biol 17:325–333CrossRefGoogle Scholar
  52. 52.
    Janin J (1997) Angströms and calories. Structure 5:473–479CrossRefGoogle Scholar
  53. 53.
    Chaires JB (1997) Energetics of drug-DNA interactions. Biopolymers 44:201–215CrossRefGoogle Scholar
  54. 54.
    Dearden DV, Liang Y, Nicoll JB, Kellersberger K (2001) Study of gas-phase molecular recognition using fourier-transform ion cyclotron resonance mass spectrometry. J Mass Spectrom 36:989–997CrossRefGoogle Scholar
  55. 55.
    Balbeur D, Dehareng D, De Pauw E (2007) Conformationally driven gas-phase H/D exchange of dinuleotide negative ions. J Am Soc Mass Spectrom 18:1827–1834CrossRefGoogle Scholar
  56. 56.
    Vairamani M, Gross ML (2003) G-quadruplex formation of thrombin aptamer detected by electrospray ionization mass spectrometry. J Am Chem Soc 125:42–43CrossRefGoogle Scholar
  57. 57.
    Mo J, Hakansson K (2006) Characterization of nucleic acid higher order structure by high-resolution tandem mass spectrometry. Anal Bioanal Chem 386:675–681CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.IECB, ARNA LaboratoryUniv. BordeauxPessacFrance
  2. 2.U869, ARNA Laboratory, InsermBordeauxFrance

Personalised recommendations