Skip to main content

In Virtuo Molecular Analysis Systems: Survey and New Trends

  • Chapter
  • First Online:
Virtual, Augmented Reality and Serious Games for Healthcare 1

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 68))

  • 4714 Accesses

Abstract

Understanding the molecules’ spatial organization in order to understand their functions is a challenge of recent molecular and structural biology. There are three phases for the analysis of molecular structures and molecular dynamics, and a large number of software. Modeling is the numerical reproduction of the 3D structures, based on biological knowledge and hypotheses. Visualization is the observation and the configuration of the models’ parameters. Then, interactions through desktop or Virtual Reality (VR) devices range from spatial manipulation to sensory perception of biological reactions. This can be called in virtuo analysis. It puts the human expert as an actor at the center of the simulation rather than an observer of automatic simulation results. It combines the advantages of computing power and advanced Human-Computer Interaction (HCI) techniques: comfort of natural interactions, physical and psychological immersion, efficiency of multimodal renderings (visual, audio and haptic), etc. This will lead to a fully hybrid cooperation between simulators and experts, for example to overcome algorithmic limits with informal human knowledge and expertise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.rcsb.org/pdb/home/home.do

  2. 2.

    http://www.acdlabs.com/chemsketch/

  3. 3.

    http://spdbv.vital-it.ch/

  4. 4.

    http://accelrys.com/products/discovery-studio/index.html

  5. 5.

    http://www.yasara.org

  6. 6.

    No longer supported.

  7. 7.

    A Wand is a 6 degrees-of-freedom device with a position/orientation tracker, 2 buttons and a trackball.

  8. 8.

    http://www.haptimol.co.uk

  9. 9.

    http://www.baaden.ibpc.fr/projects/fvnano/

  10. 10.

    http://www.utdallas.edu/hnam/software.php

  11. 11.

    http://molecularplayground.org

  12. 12.

    http://fold.it

References

  1. Ai, Z., Frohlich, T.: Molecular dynamics simulation in virtual environments. Comput. Graph. Forum 17(3), 267–273 (1998)

    Article  Google Scholar 

  2. Bailly, G., Auber, D., Nigay, L., et al.: (2006) From visualization to manipulation of rna secondary and tertiary structures. In: Proceedings of Tenth International Conference on Information Visualization, vol. IV, pp. 107–116 (2006)

    Google Scholar 

  3. Bayazit, O.B., Song, G., Amato, N., et al.: Ligand binding with obprm and haptic user input: Enhancing automatic motion planning with virtual touch. Technical Reports, College Station, TX, USA, (2000)

    Google Scholar 

  4. Bergman, D., Laaksonen, L., Laaksonen, A.: Visualization of solvation structures in liquid mixtures. J. Mol. Graph. Model. 15(5), 301–306 (1997)

    Article  Google Scholar 

  5. Bidmon, K., Reina, G., Bos, F., Pleiss, J., Ertl, T.: Time-based haptic analysis of protein dynamics. In: Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, WHC ‘07, pp. 537–542. IEEE Computer Society, Washington, DC, (2007)

    Google Scholar 

  6. Bowman, D.: Interaction techniques for common tasks in immersive virtual environments: Design, evaluation and application. Doctoral dissertation, Georgia Institute of Technology (1999)

    Google Scholar 

  7. Brooks, F., Ouh-Young, M., Batter, J.: Project gropehaptic displays for scientific visualization. ACM SIGGraph Comput. Graph. 24(4), 177–185 (1990)

    Article  Google Scholar 

  8. Burdea, G., Coiffet, P.: Virtual Reality Technology. Presence Teleoperators Virtual Environ. 12(6), 663–664 (2003)

    Article  Google Scholar 

  9. Caddigan, E., Cohen, J., Gullingsrud, J., Stone, J.: Vmd user’s guide. Urbana 51, 61801 (2003)

    Google Scholar 

  10. Chastine, J., Brooks, J., Zhu, Y., Owen, G., Harrison, R., Weber, I,. et al.: Ammp-vis: a collaborative virtual environment for molecular modeling. In: Proceedings of the ACM Symposium on Virtual reality Software and Technology, pp. 8–15, (2005)

    Google Scholar 

  11. Christopher, J.A.: Spock: The structural properties observation and calculation kit (program manual). The Center for Macromolecular Design, Texas A&M University, College Station (1998)

    Google Scholar 

  12. Claessens, M., Cutsen, E., Lasters, I., Wodak, S.: Modelling the polypeptide backbone with ‘spare parts’ from known protein structures. Prot. Eng. 4, 335 (1989)

    Article  Google Scholar 

  13. Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A., Baker, D., Popovic, Z., Players, F.: Predicting protein structures with a multiplayer online game. Nature 466(7307), 756–760 (2010)

    Article  Google Scholar 

  14. Daunay, B., Micaelli, A., Regnier, S., et al.: Energy-field reconstruction for haptic-based molecular docking using energy minimization processes. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2704–2709. IEEE, Sheraton Hotel and Marina, San Diego, Oct 29–Nov 2, (2007)

    Google Scholar 

  15. Delalande, O., Ferey, N., Laurent, B., Gueroult, M., Hartmann, B., Baaden, M., et al.: Multi-resolution approach for interactively locating functionally linked ion binding sites by steering small molecules into electrostatic potential maps using a haptic device. Pac. Symp. Biocomput. 15, 205–215 (2010)

    Google Scholar 

  16. DeLano, W.: Pymol: an open-source molecular graphics tool. CCP4 Newsletter On Protein Crystallography, vol. 40 (2002)

    Google Scholar 

  17. Desmeulles, G., Querrec, G., Redou, P., Kerdélo, S., Misery, L., Rodin, V., Tisseau, J.: The virtual reality applied to biology understanding: the in virtuo experimentation. Expert Syst. Appl. 30(1), 82–92 (2006)

    Article  Google Scholar 

  18. Essabbah, M., Otmane, S., Hérisson, J., Mallem, M.: A new approach to design an interactive system for molecular analysis. Hum.-Comput. Interact: Interact. Various Appl. Domains 5613, 713–722 (2009)

    Google Scholar 

  19. Essabbah, M., Otmane, S., Mallem, M., et al.: 3D molecular modeling: from theory to applications. In: 2008 IEEE Conference on Human System Interactions, pp. 350–355, Krakow, May 25–27, (2008)

    Google Scholar 

  20. Férey, N., Nelson, J., Martin, C., Picinali, L., Bouyer, G., Tek, A., Bourdot, P., Burkhardt, J., Katz, B., Ammi, M., Etchebest, C., Autin, L.: Multisensory VR interaction for protein-docking in the corsaire project. Virtual Reality 13(4), 257–271 (2009)

    Article  Google Scholar 

  21. Fieser, L.: Chemistry in three dimensions. Louis F. Fieser, Cambridge, MA (1963)

    Google Scholar 

  22. Gans, J., Shalloway, D.: Qmol: a program for molecular visualization on windows-based pcs. J. Mol. Graph. Model. 19(6), 557–559 (2001)

    Article  Google Scholar 

  23. Garcia-Ruiz, M.: (2001) Using non-speech sounds to convey molecular properties in a virtual environment. In: International Conference of New Technologies in Science Education, Citeseer, pp. 4–6

    Google Scholar 

  24. Garcia-Ruiz, M.: Binding virtual molecules sounds good!: Exploring a novel way to convey molecular bonding to students. In: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, vol. 2002, pp. 1489–1492, (2002)

    Google Scholar 

  25. Garcia-Ruiz, M.A., Bustos-Mendoza, C.R.: Using hardware-based voice recognition to interact with a virtual environment. In: IVEVA, (2004)

    Google Scholar 

  26. Garcia-Ruiz, M.A., Gutierrez-Pulido, J.R.: An overview of auditory display to assist comprehension of molecular information. Interact. Comput. 18, 853 (2006)

    Article  Google Scholar 

  27. Garcia-Ruiz, M.A., Bustos-Mendoza, C., Galeana-de la, O.L., Andrade-Arechiga, M., Santos-Virgen, M., Acosta-Diaz, R., et al.: Exploring multimodal virtual environments for learning biochemistry concepts. In: World Conference on Educational Multimedia, Hypermedia and Telecommunications, vol. 2004, pp. 2143–2147, (2004)

    Google Scholar 

  28. Gherbi, R., Herisson, J.: Representation and processing of complex dna spatial architecture and its annotated content. In: Proceedings of the International Pacific Symposium on Biocomputing, pp. 151–162, (2002)

    Google Scholar 

  29. Gillet, A., Sanner, M., Stoffler, D., Olson, A.: Tangible interfaces for structural molecular biology. Structure 13(3), 483–491 (2005)

    Article  Google Scholar 

  30. Guex, N., Peitsch, M.: Swiss-model and the swiss-pdb viewer: an environment for comparative protein modeling. Electrophoresis 18(15), 2714–2723 (1997)

    Article  Google Scholar 

  31. Haase, H., Strassner, J., Dai, F.: VR techniques for the investigation of molecule data. Comput. Graph. 29(2), 207–217 (1996)

    Article  Google Scholar 

  32. Hecht, D., Reiner, M., Halevy, G.: Multimodal virtual environments: response times, attention, and presence. Presence: Teleoperators Virtual Environ. 15(5), 515–523 (2006)

    Article  Google Scholar 

  33. Heyd, J., Birmanns, S.: Immersive structural biology: a new approach to hybrid modeling of macromolecular assemblies. Virtual Reality 13(4), 245–255 (2009)

    Article  Google Scholar 

  34. Hou, X., Sourina, O.: Six degree-of-freedom haptic rendering for biomolecular docking. Trans. Comput. Sci. XII. Springer, Berlin, pp. 98–117, (2011)

    Google Scholar 

  35. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  Google Scholar 

  36. Irisa, M., Gondo, S., Fujishima, Y., Kakizaki, K.: Stereoscopic viewing system for proteins using openrasmol: a tool for displaying a filament of proteins. Biophysics 3, 57–61 (2007)

    Article  Google Scholar 

  37. Jones, T., Thirup, S.: Using know substructures in protein model building and crystallography. EMBO J. 5, 819–822 (1986)

    Google Scholar 

  38. Kalawsky, R.: Exploiting virtual reality techniques in education and training: technological issues. Technical Reports, Advanced VR Research Centre, Loughborough University of Technology, URL http://www.agocg.ac.uk/reports/virtual/vrtech/title.htm, advisory Group on Computer Graphics (AGOCG), (1996)

  39. Koutek, M., van Hees, J., Post, F., Bakker, A., et al.: Virtual spring manipulators for particle steering in molecular dynamics on the responsive workbench. In: Proceedings of the workshop on Virtual environments 2002, pp. 53 (2002)

    Google Scholar 

  40. Lai-Yuen, S., Lee, Y.: Interactive computer-aided design for molecular docking and assembly. Comput.-Aided Des. Appl. 3(6), 701–709 (2006)

    Google Scholar 

  41. Levinthal, C.: Molecular model-building by computer. Scientific American, USA, (1966)

    Google Scholar 

  42. Lu, X., Olson, W.: 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31(17), 5108–5121 (2003)

    Article  Google Scholar 

  43. Maier, P., Tonnis, M., Klinker, G., Raith, A., Drees, M., Kuhn, F., et al.: What do you do when two hands are not enough? interactive selection of bonds between pairs of tangible molecules. In: Proceedings of the 2010 IEEE Symposium on 3D User Interfaces (3DUI), pp. 83–90, (2010)

    Google Scholar 

  44. Pettersen, E., Goddard, T., Huang, C., Couch, G.: Ucsf chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  Google Scholar 

  45. Sabir, K., Stolte, C., Tabor, B., O’Donoghue, S.I., et al.: The molecular control toolkit: controlling 3D molecular graphics via gesture and voice. In: IEEE Symposium on Biological Data Visualization (BioVis), pp. 49–56. IEEE (2013)

    Google Scholar 

  46. Sato, M., Liu, X., Murayama, J., Akahane, K., Isshiki, M.: A haptic virtual environment for molecular chemistry education. Lect. Notes Comput. Sci. 5080, 28–39 (2008)

    Article  Google Scholar 

  47. Shindyalov, I., Bourne, P.: WPDB-PC windows-based interrogation of macromolecular structure. J. Appl. Crystallogr. 28, 847–852 (1995)

    Article  Google Scholar 

  48. Simons, K., Bonneau, R., Ruczinski, I., Baker, D.: Ab initio protein structure prediction of casp III targets using rosetta. Proteins Struct. Funct. Bioinf. 37(3), 171–176 (1999)

    Article  Google Scholar 

  49. Smith, J.: Molmol: A free biomolecular graphics/analysis package. Genome Biol. 1(2), (2000)

    Google Scholar 

  50. Sourina, O., Torres, J., Wang, J., et al.: Visual haptic-based biomolecular docking and its applications in e-learning. Trans. Edutainment II, pp. 105–118, Springer, Berlin, (2009), doi: 10.1007/978-3-642-03270-7_8

  51. Stocks, M., Hayward, S., Laycock, S.: Interacting with the biomolecular solvent accessible surface via a haptic feedback device. BMC Struct. Biol. 9(1), 69 (2009)

    Article  Google Scholar 

  52. Stone, J.E., Gullingsrud, J., Schulten, K., et al.: A system for interactive molecular dynamics simulation. In: Proceedings of the 2001 symposium on Interactive 3D graphics, ACM, I3D ‘01, pp. 191–194. New York, (2001)

    Google Scholar 

  53. Subasi, E., Basdogan, C.: A new haptic interaction and visualization approach for rigid molecular docking in virtual environments. Presence: Teleoper Virtual Environ. 17(1), 73–90 (2008)

    Article  Google Scholar 

  54. Tarini, M., Cignoni, P., Montani, C.: Ambient occlusion and edge cueing to enhance real time molecular visualization. IEEE Trans. Visual Comput. Graphics 12(6), 1237–1244 (2006)

    Article  Google Scholar 

  55. Taylor, R., Robinett, W., Chi, V., Jr Brooks, F., et al.: The nanomanipulator: a virtual-reality interface for a scanning tunneling microscope. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Technique, pp. 127–134, (1993)

    Google Scholar 

  56. Varetto, U.: Molekel. Swiss National Supercomputing Centre, Manno (2000)

    Google Scholar 

  57. Wigdor, D., Wixon, D.: Brave NUI World: Designing Natural User Interfaces for Touch and Gesture, Elsevier, Amsterdam, (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bouyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bouyer, G., Otmane, S., Essabbah, M. (2014). In Virtuo Molecular Analysis Systems: Survey and New Trends. In: Ma, M., Jain, L., Anderson, P. (eds) Virtual, Augmented Reality and Serious Games for Healthcare 1. Intelligent Systems Reference Library, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54816-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54816-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54815-4

  • Online ISBN: 978-3-642-54816-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics