Skip to main content

Interparticle Coupling-Enhanced Detection

  • Chapter
  • First Online:
Localized Surface Plasmon Resonance Based Nanobiosensors

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

When the distances between two or more plasmonic nanoparticles are very small, the plasmon resonance scattering spectra are greatly enhanced and distinct colour changes occur due to the coupling of the particles. Similar to fluorescence resonance energy transfer, plasmonic coupling is also distance dependent. Thus, researchers have fabricated colorimetric sensors by modulating the distance between nanoparticles, which have been used in a wide variety of applications, including DNA hybridisation, heavy-metal-ion detection, and protein binding. In this chapter, we primarily focus on the coupling of single particles, which enables the single-molecule detection through enhanced sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizpurua J, Bryant GW, Richter LJ, García de Abajo FJ, Kelley BK, Mallouk T (2005) Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys Rev B 71:235420–235432

    Article  CAS  Google Scholar 

  2. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  3. Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou S et al (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B 109:1079–1087

    Article  CAS  Google Scholar 

  4. Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI (2012) Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 20:13311–13319

    Article  Google Scholar 

  5. Frontiera RR, Gruenke NL, Van Duyne RP (2012) Fano-like resonances arising from long-lived molecule–plasmon interactions in colloidal nanoantennas. Nano Lett 12:5989–5994

    Article  CAS  Google Scholar 

  6. Wang J, Wang L, Liu X, Liang Z, Song S, Li W et al (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946

    Article  CAS  Google Scholar 

  7. Krpetić Z, Singh I, Su W, Guerrini L, Faulds K, Burley GA et al (2012) Directed assembly of DNA-functionalized gold nanoparticles using pyrrole-imidazole polyamides. J Am Chem Soc 134:8356–8359

    Article  CAS  Google Scholar 

  8. Liu ZD, Li YF, Ling J, Huang CZ (2009) A localized surface plasmon resonance light-scattering assay of mercury (II) on the basis of Hg2+-DNA complex induced aggregation of gold nanoparticles. Environ Sci Technol 43:5022–5027

    Article  CAS  Google Scholar 

  9. Liu J, Lu Y (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc 127:12677–12683

    Article  CAS  Google Scholar 

  10. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  11. Song Y, Xu X, MacRenaris KW, Zhang XQ, Mirkin CA, Meade TJ (2009) Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging. Angew Chem Int Ed 48:9143–9147

    Article  CAS  Google Scholar 

  12. Chang W-S, Willingham BA, Slaughter LS, Khanal BP, Vigderman L, Zubarev ER et al (2011) Low absorption losses of strongly coupled surface plasmons in nanoparticle assemblies. Proc Natl Acad Sci 108:19879–19884

    Article  Google Scholar 

  13. Zhang L, Chen H, Wang J, Li YF, Wang J, Sang Y et al (2010) Tetrakis (4-sulfonatophenyl) porphyrin-directed assembly of gold nanocrystals: tailoring the plasmon coupling through controllable gap distances. Small 6:2001–2009

    Article  CAS  Google Scholar 

  14. Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131:8455–8459

    Article  CAS  Google Scholar 

  15. Yang L, Wang H, Yan B, Reinhard BM (2010) Calibration of silver plasmon rulers in the 1–25 nm separation range: experimental indications of distinct plasmon coupling regimes. J Phys Chem C 114:4901–4908

    Article  CAS  Google Scholar 

  16. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899–903

    Article  CAS  Google Scholar 

  17. Woo KC, Shao L, Chen H, Liang Y, Wang J, Lin H-Q (2011) Universal scaling and Fano resonance in the plasmon coupling between gold nanorods. ACS Nano 5:5976–5986

    Article  CAS  Google Scholar 

  18. Ross BM, Waldeisen JR, Wang T, Lee LP (2009) Strategies for nanoplasmonic core-satellite biomolecular sensors: theory-based design. Appl Phys Lett 95:193112–193114

    Article  CAS  Google Scholar 

  19. Atay T, Song J-H, Nurmikko AV (2004) Strongly interacting plasmon nanoparticle pairs: from dipole–dipole interaction to conductively coupled regime. Nano Lett 4:1627–1631

    Article  CAS  Google Scholar 

  20. Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088

    Article  CAS  Google Scholar 

  21. Shao L, Woo KC, Chen H, Jin Z, Wang J, Lin H-Q (2010) Angle- and energy-resolved plasmon coupling in gold nanorod dimers. ACS Nano 4:3053–3062

    Article  CAS  Google Scholar 

  22. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658

    Article  CAS  Google Scholar 

  23. Wang X, Gogol P, Cambril E, Palpant B (2012) Near-and far-field effects on the plasmon coupling in gold nanoparticle arrays. J Phys Chem C 116:24741–24747

    Article  CAS  Google Scholar 

  24. Yang L, Yan B, Reinhard BM (2008) Correlated optical spectroscopy and transmission electron microscopy of individual hollow nanoparticles and their dimers. J Phys Chem C 112:15989–15996

    Article  CAS  Google Scholar 

  25. Jamshidi A, Pauzauskie PJ, Schuck PJ, Ohta AT, Chiou P-Y, Chou J et al (2008) Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat Photonics 2:86–89

    Article  CAS  Google Scholar 

  26. Tong L, Wei H, Zhang S, Li Z, Xu H (2013) Optical properties of single coupled plasmonic nanoparticles. Phys Chem Chem Phys 15:4100–4109

    Article  CAS  Google Scholar 

  27. Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8:2245–2252

    Article  CAS  Google Scholar 

  28. Vernon KC, Funston AM, Novo C, Gómez DE, Mulvaney P, Davis TJ (2010) Influence of particle-substrate interaction on localized plasmon resonances. Nano Lett 10:2080–2086

    Article  CAS  Google Scholar 

  29. Habteyes TG, Dhuey S, Cabrini S, Schuck PJ, Leone SR (2011) Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett 11:1819–1825

    Article  CAS  Google Scholar 

  30. Sheikholeslami S, Jun Y-W, Jain PK, Alivisatos AP (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10:2655–2660

    Article  CAS  Google Scholar 

  31. Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10:2721–2726

    Article  CAS  Google Scholar 

  32. Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62:R16356–R16359

    Article  CAS  Google Scholar 

  33. Solis DJ, Willingham B, Nauert SL, Slaughter LS, Olson J, Swanglap P et al (2012) Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Lett 12:1349–1353

    Article  CAS  Google Scholar 

  34. Grzelczak M, Mezzasalma SA, Ni W, Herasimenka Y, Feruglio L, Montini T et al (2012) Antibonding plasmon modes in colloidal gold nanorod clusters. Langmuir 28:8826–8833

    Article  CAS  Google Scholar 

  35. Février M, Gogol P, Aassime A, Mégy R, Delacour Cc, Chelnokov A et al (2012) Giant coupling effect between metal nanoparticle chain and optical waveguide. Nano Lett 12:1032–1037

    Article  CAS  Google Scholar 

  36. Wei Q-H, Su K-H, Durant S, Zhang X (2004) Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett 4:1067–1071

    Article  CAS  Google Scholar 

  37. Kang Y, Erickson KJ, Taton TA (2005) Plasmonic nanoparticle chains via a morphological, sphere-to-string transition. J Am Chem Soc 127:13800–13801

    Article  CAS  Google Scholar 

  38. Wang H, Reinhard BM (2009) Monitoring simultaneous distance and orientation changes in discrete dimers of DNA linked gold nanoparticles. J Phys Chem C 113:11215–11222

    Article  CAS  Google Scholar 

  39. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745

    Article  CAS  Google Scholar 

  40. Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP, Liphardt J (2007) Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc Natl Acad Sci 104:2667–2672

    Article  CAS  Google Scholar 

  41. Yuan Z, Cheng J, Cheng X, He Y, Yeung ES (2012) Highly sensitive DNA hybridization detection with single nanoparticle flash-lamp darkfield microscopy. Analyst 137:2930–2932

    Article  CAS  Google Scholar 

  42. Xiao L, Wei L, He Y, Yeung ES (2010) Single molecule biosensing using color coded plasmon resonant metal nanoparticles. Anal Chem 82:6308–6314

    Article  CAS  Google Scholar 

  43. Sebba DS, Mock JJ, Smith DR, Labean TH, Lazarides AA (2008) Reconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches. Nano Lett 8:1803–1808

    Article  CAS  Google Scholar 

  44. Verdoold R, Gill R, Ungureanu F, Molenaar R, Kooyman RP (2011) Femtomolar DNA detection by parallel colorimetric darkfield microscopy of functionalized gold nanoparticles. Biosens Bioelectron 27:77–81

    Article  CAS  Google Scholar 

  45. Rong G, Wang H, Skewis LR, Reinhard BM (2008) Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy. Nano Lett 8:3386–3393

    Article  CAS  Google Scholar 

  46. Shi L, Jing C, Ma W, Li DW, Halls JE, Marken F, Long YT (2013) Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angew Chem Int Ed 52:6011–6014

    Article  CAS  Google Scholar 

  47. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Google Scholar 

  48. Ying YL, Li DW, Li Y, Lee JS, Long YT (2011) Enhanced translocation of poly(dt)45 through an α-hemolysin nanopore by binding with antibody. Chem Commun 47:5690–5692

    Google Scholar 

  49. Ying YL, Wang HY, Sutherland TC, Long YT (2011) Monitoring of an ATP-binding aptamer and its conformational changes using an α-hemolysin nanopore

    Google Scholar 

  50. Pang Y, Gordon R (2011) Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett 11:3763–3767

    Google Scholar 

  51. Im H, Wittenberg NJ, Lesuffleur A, Lindquist NC, Oh S-H (2010) Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem Sci 1:688–696

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tao Long .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Long, YT., Jing, C. (2014). Interparticle Coupling-Enhanced Detection. In: Localized Surface Plasmon Resonance Based Nanobiosensors. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54795-9_5

Download citation

Publish with us

Policies and ethics