Skip to main content

Morphology- and Composition-Modulated Sensing

  • Chapter
  • First Online:
Localized Surface Plasmon Resonance Based Nanobiosensors

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Nanoparticles with various sizes and shapes produce unique localized surface plasmon resonance bands and exhibit different physical and chemical properties. For instance, catalytic ability, sensitivity to changes in the surrounding medium, and biocompatibility are all dependent on the morphology of nanoparticles. In recent decades, various types of nanostructures have been fabricated to tune plasmon resonance bands, enhance the electromagnetic field around metal nanoparticles, and determine the relationship between the size and shape of nanoparticles and their LSPR band. In this chapter, we discuss the effect of morphology on plasmonic properties and the related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453

    Article  CAS  Google Scholar 

  2. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  3. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  4. Gans R (1912) Über die form ultramikroskopischer goldteilchen. Ann Phys 37:881–900

    Article  CAS  Google Scholar 

  5. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  CAS  Google Scholar 

  6. Hu M, Hillyard P, Hartland GV, Kosel T, Perez-Juste J, Mulvaney P (2004) Determination of the elastic constants of gold nanorods produced by seed mediated growth. Nano Lett 4:2493–2497

    Article  CAS  Google Scholar 

  7. Gao J, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070

    Article  CAS  Google Scholar 

  8. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  Google Scholar 

  9. Nelayah J, Kociak M, Stéphan O, de Abajo FJG, Tencé M, Henrard L et al (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3:348–353

    Article  CAS  Google Scholar 

  10. Pedano ML, Li S, Schatz GC, Mirkin CA (2010) Periodic electric field enhancement along gold rods with nanogaps. Angew Chem 122:82–86

    Article  Google Scholar 

  11. Heo CJ, Kim SH, Jang SG, Lee SY, Yang SM (2009) Gold “nanograils” with tunable dipolar multiple plasmon resonances. Adv Mater 21:1726–1731

    Article  CAS  Google Scholar 

  12. Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6:827–832

    Article  CAS  Google Scholar 

  13. McMahon JM, Wang Y, Sherry LJ, Van Duyne RP, Marks LD, Gray SK et al (2009) Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J Phys Chem C 113:2731–2735

    Article  CAS  Google Scholar 

  14. Becker J, Schubert O, Sönnichsen C (2007) Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method. Nano Lett 7:1664–1669

    Article  CAS  Google Scholar 

  15. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  16. Mahmoud M, El-Sayed M (2011) Time dependence and signs of the shift of the surface plasmon resonance frequency in nanocages elucidate the nanocatalysis mechanism in hollow nanoparticles. Nano Lett 11:946–953

    Article  CAS  Google Scholar 

  17. Hu M, Chen J, Marquez M, Xia Y, Hartland GV (2007) Correlated rayleigh scattering spectroscopy and scanning electron microscopy studies of Au-Ag bimetallic nanoboxes and nanocages. J Phys Chem C 111:12558–12565

    Article  CAS  Google Scholar 

  18. Jin R, Cao Y, Mirkin CA, Kelly K, Schatz GC, Zheng J (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  19. Härtling T, Alaverdyan Y, Wenzel MT, Kullock R, Käll M, Eng LM (2008) Photochemical tuning of plasmon resonances in single gold nanoparticles. J Phys Chem C 112:4920–4924

    Article  CAS  Google Scholar 

  20. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    Article  CAS  Google Scholar 

  21. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF et al (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301

    Article  CAS  Google Scholar 

  22. Qin LX, Li Y, Li DW, Jing C, Chen BQ, Ma W et al (2012) Electrodeposition of single-metal nanoparticles on stable protein 1 membranes: application of plasmonic sensing by single nanoparticles. Angew Chem Int Ed 51:140–144

    Article  CAS  Google Scholar 

  23. Jing C, Gu Z, Ying Y-L, Li D-W, Zhang L, Long Y-T (2012) Chrominance to dimension: a real-time method for measuring the size of single gold nanoparticles. Anal Chem 84:4284–4291

    Article  CAS  Google Scholar 

  24. Song Y, Nallathamby PD, Huang T, Elsayed-Ali HE, Xu X-HN (2009) Correlation and characterization of three-dimensional morphologically dependent localized surface plasmon resonance spectra of single silver nanoparticles using dark-field optical microscopy and spectroscopy and atomic force microscopy. J Phys Chem C 114:74–81

    Article  CAS  Google Scholar 

  25. Mock J, Barbic M, Smith D, Schultz D, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6760

    Article  CAS  Google Scholar 

  26. Ringe E, Zhang J, Langille MR, Mirkin CA, Marks LD, Van Duyne RP (2012) Correlating the structure and localized surface plasmon resonance of single silver right bipyramids. Nanotechnology 23:444005–444011

    Article  CAS  Google Scholar 

  27. Blaber MG, Henry A-I, Bingham JM, Schatz GC, Van Duyne RP (2011) LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis. J Phys Chem C 116:393–403

    Article  CAS  Google Scholar 

  28. Ringe E, Langille MR, Sohn K, Zhang J, Huang J, Mirkin CA et al (2012) Plasmon length: a universal parameter to describe size effects in gold nanoparticles. J Phys Chem Lett 3:1479–1483

    Article  CAS  Google Scholar 

  29. Huang Y, Kim D-H (2011) Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles. Nanoscale 3:3228–3232

    Article  CAS  Google Scholar 

  30. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6:683–688

    Article  CAS  Google Scholar 

  31. Anderson LJ, Payne CM, Zhen Y-R, Nordlander P, Hafner JH (2011) A tunable plasmon resonance in gold nanobelts. Nano Lett 11:5034–5037

    Article  CAS  Google Scholar 

  32. Tang ML, Liu N, Dionne JA, Alivisatos AP (2011) Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. J Am Chem Soc 133:13220–13223

    Article  CAS  Google Scholar 

  33. Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Scattering spectra of single gold nanoshells. Nano Lett 4:2355–2359

    Article  CAS  Google Scholar 

  34. Banholzer MJ, Harris N, Millstone JE, Schatz GC, Mirkin CA (2010) Abnormally large plasmonic shifts in silica-protected gold triangular nanoprisms. J Phys Chem C 114:7521–7526

    Article  CAS  Google Scholar 

  35. Moon S, Kim Y, Oh Y, Lee H, Kim HC, Lee K et al (2012) Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization. Biosens Bioelectron 32:141–147

    Article  CAS  Google Scholar 

  36. Srnová-Šloufová I, Vlčková B, Bastl Z, Hasslett TL (2004) Bimetallic (Ag) Au nanoparticles prepared by the seed growth method: two-dimensional assembling, characterization by energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and surface enhanced Raman spectroscopy, and proposed mechanism of growth. Langmuir 20:3407–3415

    Article  CAS  Google Scholar 

  37. Wu Y, Jiang P, Jiang M, Wang T-W, Guo C-F, Xie S-S et al (2009) The shape evolution of gold seeds and gold@ silver core–shell nanostructures. Nanotechnology 20:305602–305612

    Article  CAS  Google Scholar 

  38. Shore MS, Wang J, Johnston-Peck AC, Oldenburg AL, Tracy JB (2011) Synthesis of Au (Core)/Ag (Shell) nanoparticles and their conversion to AuAg alloy nanoparticles. Small 7:230–234

    Article  CAS  Google Scholar 

  39. Deng J, Du J, Wang Y, Tu Y, Di J (2011) Synthesis of ultrathin silver shell on gold core for reducing substrate effect of LSPR sensor. Electrochem Commun 13:1517–1520

    Article  CAS  Google Scholar 

  40. Xiong B, Zhou R, Hao J, Jia Y, He Y, Yeung ES (2013) Highly sensitive sulphide mapping in live cells by kinetic spectral analysis of single Au–Ag core-shell nanoparticles. Nat Commun 4:1708–1717

    Article  CAS  Google Scholar 

  41. Park S-J, Duncan TV, Sanchez-Gaytan BL, Park S-J (2008) Bifunctional nanostructures composed of fluorescent core and metal shell subdomains with controllable geometry. J Phys Chem C 112:11205–11210

    Article  CAS  Google Scholar 

  42. Raschke G, Brogl S, Susha A, Rogach A, Klar T, Feldmann J et al (2004) Gold nanoshells improve single nanoparticle molecular sensors. Nano Lett 4:1853–1857

    Article  CAS  Google Scholar 

  43. Averitt R, Sarkar D, Halas N (1997) Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78:4217–4220

    Article  CAS  Google Scholar 

  44. Hien Pham TT, Cao C, Sim SJ (2008) Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations. J Magn Magn Mater 320:2049–2055

    Article  CAS  Google Scholar 

  45. Peng S, Lei C, Ren Y, Cook RE, Sun Y (2011) Plasmonic/magnetic bifunctional nanoparticles. Angew Chem Int Ed 50:3158–3163

    Article  CAS  Google Scholar 

  46. Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699

    Article  CAS  Google Scholar 

  47. Zhang L, Li Y, Li DW, Jing C, Chen X, Lv M et al (2011) Single gold nanoparticles as real-time optical probes for the detection of NADH-dependent intracellular metabolic enzymatic pathways. Angew Chem 123:6921–6924

    Article  Google Scholar 

  48. Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W et al (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem 123:12200–12204

    Article  Google Scholar 

  49. Liu Q, Jing C, Zheng X, Gu Z, Li D, Li D-W et al (2012) Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles. Chem Commun 48:9574–9576

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tao Long .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Long, YT., Jing, C. (2014). Morphology- and Composition-Modulated Sensing. In: Localized Surface Plasmon Resonance Based Nanobiosensors. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54795-9_4

Download citation

Publish with us

Policies and ethics