Skip to main content

Chasing Diagrams in Cryptography

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8222))

Abstract

Cryptography is a theory of secret functions. Category theory is a general theory of functions. Cryptography has reached a stage where its structures often take several pages to define, and its formulas sometime run from page to page. Category theory has some complicated definitions as well, but one of its specialties is taming the flood of structure. Cryptography seems to be in need of high level methods, whereas category theory always needs concrete applications. So why is there no categorical cryptography? One reason may be that the foundations of modern cryptography are built from probabilistic polynomial-time Turing machines, and category theory does not have a good handle on such things. On the other hand, such foundational problems might be the very reason why cryptographic constructions often resemble low level machine programming. I present some preliminary explorations towards categorical cryptography. It turns out that some of the main security concepts are easily characterized through diagram chasing, going back to Lambek’s seminal ‘Lecture Notes on Rings and Modules’.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Errors in computational complexity proofs for protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 624–643. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Dent, A.W.: Fundamental problems in provable security and cryptography. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1849), 3215–3230 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dolev, D., Even, S., Karp, R.M.: On the security of ping-pong protocols. In: CRYPTO, pp. 177–186 (1982)

    Google Scholar 

  5. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Information Theory 29(2), 198–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pavlovic, D.: Geometry of abstraction in quantum computation. Proceedings of Symposia in Applied Mathematics 71, 233–267 (2012) arxiv.org:1006.1010

    Google Scholar 

  7. Freyd, P.: Abelian Categories: An Introduction to the Theory of Functors. Harper and Row (1964)

    Google Scholar 

  8. Goldreich, O.: Foundations of Cryptography. Cambridge University Press (2000)

    Google Scholar 

  9. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: STOC 1982: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 365–377. ACM Press, New York (1982)

    Chapter  Google Scholar 

  10. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grillet, P.A.: Semigroups: An introduction to the structure theory. Marcel Dekker, Inc. (1995)

    Google Scholar 

  12. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. in Math. 88, 55–113 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC Series in Cryptography and Network Security. Chapman & Hall/CRC (2007)

    Google Scholar 

  14. Kelly, G.M.: On clubs and doctrines. In: Kelly, G.M. (ed.) Category Seminar. Sydney 1972/73, pp. 181–256. Springer, Berlin (1974)

    Chapter  Google Scholar 

  15. Koblitz, N., Menezes, A.: Another look at “Provable Security”. II. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 148–175. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Koblitz, N., Menezes, A.: Another look at “Provable Security”. J. Cryptology 20(1), 3–37 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koblitz, N., Menezes, A.: The brave new world of bodacious assumptions in cryptography. Notices of the American Mathematical Society 57(3), 357–365 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Lambek, J.: How to program an infinite abacus. Canad. Math. Bull. 4(3), 295–302 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lambek, J.: Lectures on Rings and Modules. Blaisdell Publishing Co. (1966)

    Google Scholar 

  20. Lambek, J.: From types to sets. Adv. in Math. 36, 113–164 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lambek, J., Scott, P.J.: Introduction to higher order categorical logic. Cambridge Stud. Adv. Math., vol. 7. Cambridge University Press, New York (1986)

    MATH  Google Scholar 

  22. Lane, S.M.: Homology. Springer (1963)

    Google Scholar 

  23. Pavlovic, D.: Maps II: Chasing diagrams in categorical proof theory. J. of the IGPL 4(2), 1–36 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pavlovic, D.: Categorical logic of names and abstraction in action calculus. Math. Structures in Comp. Sci. 7, 619–637 (1997)

    Article  MATH  Google Scholar 

  25. Pavlovic, D.: Monoidal computer I: Basic computability by string diagrams. Information and Computation (2013) (to appear) arxiv:1208.5205

    Google Scholar 

  26. Pavlovic, D., Meadows, C.: Bayesian authentication: Quantifying security of the Hancke-Kuhn protocol. E. Notes in Theor. Comp. Sci. 265, 97–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pavlovic, D., Pratt, V.: The continuum as a final coalgebra. Theor. Comp. Sci. 280(1-2), 105–122 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)

    Google Scholar 

  29. Shannon, C.E.: Communication theory of secrecy systems. Bell Systems Technical Journal 28, 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 239–259. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pavlovic, D. (2014). Chasing Diagrams in Cryptography. In: Casadio, C., Coecke, B., Moortgat, M., Scott, P. (eds) Categories and Types in Logic, Language, and Physics. Lecture Notes in Computer Science, vol 8222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54789-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54789-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54788-1

  • Online ISBN: 978-3-642-54789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics