Electrodiagnostic Testing of the Peripheral Nerves

  • Thomas Schelle


Electrodiagnostic examination (EDX) consists of two major parts: nerve conduction studies (NCS), including long latency reflex testing (F-waves), and needle electromyography (EMG). In addition, somatosensory evoked potentials and magnetic stimulation motor evoked potentials are needed sometimes, but the two latter techniques are outside the scope of this chapter. NCS and EMG are usually performed together. In contrast to nerve imaging such as magnetic resonance imaging (MRI) and high-resolution ultrasound (HRUS) (see Chap. 6), EDX provides functional information about the electrical properties of the peripheral nerves. EDX should only be carried out by specially trained staff, such as by a certified physician, or under his or her direct supervision [1].


Motor Unit Nerve Conduction Study Compound Muscle Action Potential Motor Nerve Conduction Velocity Sensory Nerve Action Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    American Association of Electrodiagnostic Medicine. Recommended policy for electrodiagnostic studies. Muscle Nerve. 1999;22:101–4.Google Scholar
  2. 2.
    Preston DC, Shapiro BE. Electromyography and neuromuscular disorders. Clinical-electrophysiologic correlations. 2nd ed. Philadelphia: Elsevier; 2005. ISBN 075067492X.Google Scholar
  3. 3.
    Kimura J. Electrodiagnosis in diseases of nerve and muscle. 3rd ed. Oxford: Oxford University Press; 2001. ISBN 0-19-512977-6.Google Scholar
  4. 4.
    Chemali KM, Tsao B. Electrodiagnostic testing of nerves and muscles: when, why, and how to order. Cleve Clin J Med. 2005;72(1):37–48.PubMedCrossRefGoogle Scholar
  5. 5.
    Fuller G. How to get the most out of conduction studies and electromyography. J Neurol Neurosurg Psychiatry. 2005;76(Suppl II):41–6.Google Scholar
  6. 6.
    Hobson-Webb LD, Padua L, Martinoli C. Ultrasonography in the diagnosis of peripheral nerve disease. Expert Opin Med Diagn. 2012;6(5):457–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Erlanger J, Gasser HS. Electrical signs of nervous activity. Philadelphia: University of Penn Press; 1937.Google Scholar
  8. 8.
    Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60:108–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Bischoff C, Conrad B. Das EMG Buch. 1st ed. New York/Stuttgart: Auflage/Georg Thieme Verlag; 1998. p. 1–65. ISBN 3-13-110341-8.Google Scholar
  10. 10.
    Huynh W, Kiernan MC. Nerve conduction studies. Aust Fam Physician. 2011;40(9):693–7.PubMedGoogle Scholar
  11. 11.
    Slutskty DJ. Nerve conduction studies in hand surgery. J Am Soc SurgHand. 2003;3(3):152–69.Google Scholar
  12. 12.
    Wilbourn AJ. Nerve conduction studies. Types, components, abnormalities, and value in localization. Neurol Clin. 2002;20(2):305–38.PubMedCrossRefGoogle Scholar
  13. 13.
    Research criteria for diagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP). Report from an Ad Hoc Subcommittee of the American Academy of Neurology AIDS Task Force. Neurology. 1991;41(5):617–8.Google Scholar
  14. 14.
    American Association of Electrodiagnostic Medicine, Olney RK. Guidelines in electrodiagnostic medicine. Consensus criteria for the diagnosis of partial conduction block. Muscle Nerve Suppl. 1999;8:225–9.Google Scholar
  15. 15.
    Buschbacher RM, Prahlow ND. Manual of nerve conduction studies. 2nd ed. New York: Demos Medical Publishing; 2005. ISBN 1888799943.Google Scholar
  16. 16.
    Rosenfalck P, Rosenfalck A. Electromyography-sensory and motor conduction. Findings in normal subjects. Copenhagen: Laboratory of Clinical Neurophysiology, University of Copenhagen; 1975. p. 1–49.Google Scholar
  17. 17.
    Tong HC, Werner RA, Franzblau A. Effect of aging on sensory nerve conduction study parameters. Muscle Nerve. 2004;29(5):716–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Dioszeghy P, Stålberg E. Changes in motor and sensory nerve conduction parameters with temperature in normal and diseased nerve. Electroencephalogr Clin Neurophysiol. 1992;85(4):229–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Dhavalikar M, Narkeesh A, Gupta N. Effect of skin temperature on nerve conduction velocity and reliability of temperature correction formula in Indian females. J Exerc Sci Physiother. 2009;5(1):24–9.Google Scholar
  20. 20.
    McCluskey L, Feinberg D, Cantor C, et al. “Pseudo-conduction block” in vasculitic neuropathy. Muscle Nerve. 1999;22:1361–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Van den Bergh PY, Piéret F. Electrodiagnostic criteria for acute and chronic inflammatory demyelinating polyradiculoneuropathy. Muscle Nerve. 2004;29(4):565–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Preston DC, Shapiro BE. Needle electromyography fundamentals, normal and abnormal patterns. Neurol Clin. 2002;20(2):361–96.PubMedCrossRefGoogle Scholar
  23. 23.
    Tankisi H, Pugdahl K, Johnsen B, Fuglsang-Frederiksen A. Correlations of nerve conduction measures in axonal and demyelinating polyneuropathies. Clin Neurophysiol. 2007;118(11):2383–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Stöhr M. Atlas der klinischen Elektromyografie und Neurografie. 4th ed. Stuttgard/Berlin/Kölln: Auflage/W. Kohlhammer Verlag; 1998. p. 164. ISBN 3-17-015475-3.Google Scholar
  25. 25.
    Mondelli M, Aretini A, Arrigucci U, Ginanneschi F, Greco G, Sicurelli F. Sensory nerve action potential amplitude is rarely reduced in lumbosacral radiculopathy due to herniated disc. Clin Neurophysiol. 2013;124(2):405–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Ho YH, Yan SH, Lin YT, Lo YK. Sensory nerve conduction studies of the superficial peroneal nerve in L5 radiculopathy. Acta Neurol Taiwan. 2004;13(3):114–9.PubMedGoogle Scholar
  27. 27.
    Fisher MA. F waves. Muscle Nerve. 1985;8:71–2.PubMedCrossRefGoogle Scholar
  28. 28.
    Panayiotoupoulos CP, Chroni E. F-waves in clinical neurophysiology: a review, methodological issues and overall value in peripheral neuropathies. Electroencephalogr Clin Neurophysiol. 1996;101:365–74.CrossRefGoogle Scholar
  29. 29.
    Fisher MA. H reflexes and F waves. Fundamentals, normal and abnormal patterns. Neurol Clin. 2002;20(2):339–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Mesrati F, Vecchierini MF. F-waves: neurophysiology and clinical value. Neurophysiol Clin. 2004;34(5):217–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Raudino F. F-wave: sample size and normative values. Electromyogr Clin Neurophysiol. 1997;37:107–9.PubMedGoogle Scholar
  32. 32.
    Vucic S, Cairns KD, Black KR, Chong PS, Cros D. Neurophysiologic findings in early acute inflammatory demyelinating polyradiculoneuropathy. Clin Neurophysiol. 2004;115(10):2329–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Rajabally YA, Varanasi S. Practical electrodiagnostic value of F-wave studies in chronic inflammatory demyelinating polyneuropathy. Clin Neurophysiol. 2013;124(1):171–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Toyokura M, Murakami K. F-wave study in patients with lumbosacral radiculopathies. Electromyogr Clin Neurophysiol. 1997;37(1):19–26.PubMedGoogle Scholar
  35. 35.
    Weber F, Albert U. Electrodiagnostic examination of lumbosacral radiculopathies. Electromyogr Clin Neurophysiol. 2000;40(4):231–6.PubMedGoogle Scholar
  36. 36.
    Lo YL, Chan LL, Leoh T, Lim W, Tan SB, Tan CT, Fook-Chong S. Diagnostic utility of F waves in cervical radiculopathy: electrophysiological and magnetic resonance imaging correlation. Clin Neurol Neurosurg. 2008;110(1):58–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Mills KR. The basics of electromyography. J Neurol Neurosurg Psychiatry. 2005;76 Suppl 2:32–5.Google Scholar
  38. 38.
    Chémali KR, Tsao B. Electrodiagnostic testing of nerves and muscles: when, why, and how to order. Cleve Clin J Med. 2005;72(1):37–48.PubMedCrossRefGoogle Scholar
  39. 39.
    Daube JR, Rubin DI. Needle electromyography. Muscle Nerve. 2009;39(2):244–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Buchthal F, Rosenfalck P. Spontaneous electrical activity of human muscle. Electroencephalogr Clin Neurophysiol. 1966;20:321–36.PubMedCrossRefGoogle Scholar
  41. 41.
    Liddell EGT, Sherrington CS. Recruitment and some other features of reflex inhibition. Proc R Soc Lond. 1925;97:488.CrossRefGoogle Scholar
  42. 42.
    Daube JR. Needle examination in electromyography. Rochester: American Association of Electromyography and Electrodiagnosis; 1979. Minimonograph No. 11.Google Scholar
  43. 43.
    Milner-Brown HS, Stein RB, Yemm R. Changes in firing rate of human motor units during linearly changing voluntary isometric contraction. J Physiol (Lond). 1973;230:371–90.Google Scholar
  44. 44.
    Gath I, Stålberg E. The calculated radial decline of the extracellular action potential compared with in situ measurements in the human brachial biceps. Electroencephalogr Clin Neurophysiol. 1978;44:547–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Rosenfalck P. Intra- and extracellular potential fields of active nerve and muscle fibers. Acta Physiol Scand. 1969;75 Suppl 321:1168.Google Scholar
  46. 46.
    Buchthal F, Pinelli P, Rosenfalck P. Action potential parameters in normal human muscle and their physiologic determinants. Acta Physiol Scand. 1954;32:219.PubMedCrossRefGoogle Scholar
  47. 47.
    Brown WF. The physiological and technical basis of electromyography. Boston: Butterworth; 1984.Google Scholar
  48. 48.
    Buchthal F. Fibrillations: clinical electrophysiology. In: Culp WJ, Ochoa J, editors. Abnormal nerves and muscles as impulse generators. Oxford: Oxford University Press; 1982. p. 632–62.Google Scholar
  49. 49.
    Denny-Brown D, Pennybacker JB. Fibrillation and fasciculation in voluntary muscle. Brain. 1938;61:311.CrossRefGoogle Scholar
  50. 50.
    Dumitru D. Single muscle fiber discharges (insertional activity, end-plate potentials, positive sharp waves, and fibrillation potentials): a unifying proposal. Muscle Nerve. 1996;19:221–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Emeryk B, Hausmanowa-Petrusewicz I, Nowak T. Spontaneous volleys of bizarre high frequency potentials in neuromuscular diseases. Part I Occurrence of spontaneous volleys of bizarre high frequency potentials in neuromuscular diseases. Electromyogr Clin Neurophysiol. 1974;14:303–12.PubMedGoogle Scholar
  52. 52.
    Emeryk B, Hausmanowa-Petrusewicz I, Nowak T. Spontaneous volleys of bizarre high frequency potentials in neuromuscular diseases. Part II An analysis of the morphology of spontaneous volleys of bizarre high frequency potentials in neuromuscular diseases. Electromyogr Clin Neurophysiol. 1974;14:339–54.PubMedGoogle Scholar
  53. 53.
    Roth G. The origin of fasciculation potentials. Ann Neurol. 1982;12:542–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Albers JW, Allen AA, Bastron JA, Daube JR. Limb myokymia. Muscle Nerve. 1981;4:494–504.PubMedCrossRefGoogle Scholar
  55. 55.
    Quan D, Bird SJ. Nerve conduction studies and electromyography in the evaluation of peripheral nerve injuries. Univ PA Orthop J. 1999;12:45–51.Google Scholar
  56. 56.
    Sunderland S. Nerve and nerve injuries. 2nd ed. Edinburgh: Churchill Livingstone; 1978. p. 108–32.Google Scholar
  57. 57.
    Brown MC, Ironton R. Sprouting and regression of neuromuscular synapses in partially denervated mammalian muscles. J Physiol. 1978;278:325–48.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Al-Shekhlee A, Shapiro BE, Preston DC. Iatrogenic complications and risks of nerve conduction studies and needle electromyography. Muscle Nerve. 2003;27(5):517–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Lynch SL, Boon AJ, Smith J, Harper Jr CM, Tanaka EM. Complications of needle electromyography: hematoma risk and correlation with anticoagulation and antiplatelet therapy. Muscle Nerve. 2008;38(4):1225–30.PubMedCrossRefGoogle Scholar
  60. 60.
    Boon AJ, Gertken JT, Watson JC, Laughlin RS, Strommen JA, Mauermann ML, Sorenson EJ. Hematoma risk after needle electromyography. Muscle Nerve. 2012;45(1):9–12.PubMedCrossRefGoogle Scholar
  61. 61.
    Schoeck AP, Mellion ML, Gilchrist JM, Christian FV. Safety of nerve conduction studies in patients with implanted cardiac devices. Muscle Nerve. 2007;35(4):521–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Derejko M, Derejko P, Przybylski A, Niewiadomska M, Antczak J, Banach M, Rakowicz M, Szumowski Ł, Walczak F. Safety of nerve conduction studies in patients with implantable cardioverter-defibrillators. Clin Neurophysiol. 2012;123(1):211–3.PubMedCrossRefGoogle Scholar
  63. 63.
    Cronin EM, Gray J, Abi-Saleh B, Wilkoff BL, Levin KH. Safety of repetitive nerve stimulation in patients with cardiac implantable electronic devices. Muscle Nerve. 2013;47(6):840–4. doi: 10.1002/mus.23707.PubMedCrossRefGoogle Scholar
  64. 64.
    Koo YS, Cho CS, Kim BJ. Pitfalls in using electrophysiological studies to diagnose neuromuscular disorders. J Clin Neurol. 2012;8(1):1–14.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Thomas Schelle
    • 1
  1. 1.Neurological DepartmentMunicipal Hospital DessauDessau-RosslauGermany

Personalised recommendations