Skip to main content

Transport of Reactive Contaminants

  • Chapter
  • First Online:
Contaminant Geochemistry

Abstract

The previous chapter focused on the physical mechanisms (advection, diffusion, and dispersion) and the physical characteristics of the subsurface (heterogeneity) that control the dynamics of contaminant transport from the land surface to the water table. In addition, contaminants are subject to a range of chemical interactions with other (dissolved) chemical species present in the subsurface, colloids, and the porous matrix itself. The previous sections of this book dealt with such reactions, including sorption (by various types of bonding), decay, degradation, complexation, precipitation, dissolution, and volatilization as well as interactions (and transport) with migrating colloids. These reactions thus influence—and are influenced by—advective, diffusive, and dispersive transport mechanisms. To include the effects of these reactions in quantifying the dynamics of contaminant transport, additional terms can be included in the transport equations surveyed in Chap. 10. In most cases, the resulting transport equations contain relatively simple terms that account for chemical species loss from or entry to the aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriola LM, Pinder GF (1985) A multiphase approach to the modelling of porous media contamination by organic compounds. Water Resour Res 21:11–18

    Article  Google Scholar 

  • Ahuja LR (1982) Release of soluble chemicals from soil to runoff. Trans Am Soc Agric Eng 25:948–953

    Google Scholar 

  • Ahuja LR, Lehman OR (1983) The extent and nature of rainfall-soil interaction in the release of soluble chemicals. J Environ Qual 12:34–44

    Article  Google Scholar 

  • Albinger O, Biesemeyer BK, Arnold RG, Logan BE (1994) Effect of bacterial heterogeneity on adhesion to uniform collectors by monoclonal populations. FEMS Microbiol Lett 124:321–326

    Article  Google Scholar 

  • Amitay-Rosen T, Cortis A, Berkowitz B (2005) Magnetic resonance imaging and quantitative analysis of particle deposition in porous media. Environ Sci Technol 39:7208–7216

    Article  Google Scholar 

  • Baygents JC, Glynn JRJ, Albinger O, Biesemeyer BK, Ogden KL, Arnold RG (1998) Variation of surface charge density in monoclonal bacterial populations: implications for transport through porous media. Environ Sci Technol 32:1596–1603

    Article  Google Scholar 

  • Berkowitz B, Emmanuel S, Scher H (2008) non-Fickian transport and multiple rate mass transfer in porous media. Water Resour Res 44: doi:10.1029/2007WR005906

  • Bijeljic B, Rubin S, Scher H, Berkowitz B (2011) Non-Fickian transport in porous media with bimodal structural heterogeneity. J Contam Hydrol 120(121):213–221

    Article  Google Scholar 

  • Blunt MJ (2000) An empirical model for three-phase relative permeability. SPE J 5:435–445

    Article  Google Scholar 

  • Blunt MJ, Scher H (1995) Pore-level modeling of wetting. Phys Rev E 52:6387–6403

    Article  Google Scholar 

  • Bolster CH, Hornberger GM, Mills AL, Wilson JL (1998) A method for calculating bacterial deposition coefficients using the fraction of bacteria recovered from laboratory columns. Environ Sci Technol 32:1329–1332

    Article  Google Scholar 

  • Bolton EW, Lasaga AC, Rye DM (1996) A model for the kinetic control of quartz dissolution and precipitation in porous media flow with spatially variable permeability: formulation and examples of thermal convection. J Geophys Res 101:22157–22187

    Article  Google Scholar 

  • Bolton EW, Lasaga AC, Rye DM (1997) Dissolution and precipitation via forced-flux injection in the porous medium with spatially variable permeability: kinetic control in two dimensions. J Geophys Res 102:12159–12172

    Article  Google Scholar 

  • Camesano T, Logan B (1998) Influence of fluid velocity and cell concentration on the transport of motile and non-motile bacteria in porous media. Environ Sci Technol 32:1699–1708

    Article  Google Scholar 

  • Cheng JT, Pyrak-Nolte LJ, Nolte DD, Giordano NJ (2004) Linking pressure and saturation through interfacial areas in porous media. Geophys Res Lett 31:L08502

    Google Scholar 

  • Cortis A, Harter T, Hou L, Atwill ER, Packman AI, Green PG (2006) Transport of Cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. Water Resour Res 42:W12S13

    Google Scholar 

  • Daccord G (1987) Chemical dissolution of a porous medium by a reactive fluid. Phys Rev Lett 58:479–482

    Article  Google Scholar 

  • Daccord G, Lenormand R (1987) Fractal patterns from chemical dissolution. Nature 325:41–43

    Article  Google Scholar 

  • Daccord G, Lietard O, Lenormand R (1993) Chemical dissolution of a porous medium by a reactive fluid, 2, Convection vs. reaction behavior diagram. Chem Eng Sci 48:179–186

    Article  Google Scholar 

  • Darmody RG, Thorn CE, Harder RL, Schlyter JPL, Dixon JC (2000) Weathering implications of water chemistry in an arctic-alpine environment, North Sweden. Geomorphol 34:89–100

    Article  Google Scholar 

  • Dijk P, Berkowitz B (1998) Precipitation and dissolution of reactive solutes in fractures. Water Resour Res 34:457–470

    Article  Google Scholar 

  • Dijk P, Berkowitz B (2000) Buoyancy-driven dissolution enhancement in rock fractures. Geol 28:1051–1054

    Article  Google Scholar 

  • Eliott AH, Trowsdale SA (2007) A review of models for low impact urban stormwater drainage. Environ Mod Softw 22:394–405

    Article  Google Scholar 

  • Emmanuel S, Berkowitz B (2005) Mixing-induced precipitation and porosity evolution in porous media. Adv Water Resour 28:337–344

    Article  Google Scholar 

  • Ewing RP, Berkowitz B (1998) A generalized growth model for simulating initial migration of dense non-aqueous liquids. Water Resour Res 34:611–622

    Article  Google Scholar 

  • Fogler HS, Rege SD (1986) Porous dissolution reactors. Chem Eng Commun 42:291–313

    Article  Google Scholar 

  • Furuberg L, Feder J, Aharony A, Jøssang T (1988) Dynamics of invasion percolation. Phys Rev Lett 61:2117–2120

    Article  Google Scholar 

  • Hairsine PB, Rose CW (1991) Rainfall detachment and deposition: modeling the physical processes. Proc Soil Sci Soc Am 55:320–324

    Article  Google Scholar 

  • Hilgers C, Urai JL (2002) Experimental study of syntaxial vein growth during lateral fluid flow in transmitted light: first results. J Struct Geol 24:1029–1043

    Article  Google Scholar 

  • Hoefner ML, Fogler HS (1988) Pore evolution and channel formation during flow and reaction in porous media. AIChE J 34:45–54

    Article  Google Scholar 

  • Hornung G, Berkowitz B, Barkai N (2005) Morphogen gradient formation in a complex environment: an anomalous diffusion model. Phys Rev E 72:041916

    Article  Google Scholar 

  • Hubbard RK, Erickson AE, Ellis BG, Wolcot AR (1982) Movement of diffuse source pollutants in small agricultural watersheds of the Great Lakes Basin. J Environ Qual 11:117–123

    Article  Google Scholar 

  • Israelachvili JN (1991) Intermolecular and surface forces. Elsevier, New York

    Google Scholar 

  • Jain V, Bryant S, Sharma M (2003) Influence of wettability and saturation on liquid–liquid interfacial area in porous media. Environ Sci Technol 37:584–591

    Article  Google Scholar 

  • Johns ML, Gladden LF (1999) Magnetic resonance imaging study of the dissolution kinetics of octanol in porous media. J Colloid Interface Sci 210:261–270

    Article  Google Scholar 

  • Jové Colon CF, Oelkers EH, Schott J (2004) Experimental investigation of the effect of dissolution on sandstone permeability, porosity, and reactive surface area. Geochim Cosmochim Acta 68:805–817

    Article  Google Scholar 

  • Jury WA, Fluhler H (1992) Transport of chemicals through soil: mechanisms, models and field applications. Adv Agron 47:142–202

    Google Scholar 

  • Kieffer B, Jové CF, Oelkers EK, Schott J (1999) An experimental study of the reactive surface area of the Fontainebleau sandstone as a function of porosity, permeability, and fluid flow rate. Geochim Cosmochim Acta 63:3525–3534

    Article  Google Scholar 

  • Lasaga A (1984) Chemical kinetics of water-rock interactions. J Geophys Res 89:4009–4025

    Article  Google Scholar 

  • Lee YJ, Morse JW (1999) Calcite precipitation in synthetic veins: implications for the time and fluid volume necessary for vein filling. Chem Geol 156:151–170

    Article  Google Scholar 

  • Lenormand R, Zarcone C (1985) Invasion percolation in an etched network: measurement of fractal dimension. Phys Rev Lett 54:2226–2229

    Article  Google Scholar 

  • Lenormand R, Touboul E, Zarcone C (1988) Numerical models and experiments on immiscible displacement in porous media. J Fluid Mech 189:165–187

    Article  Google Scholar 

  • Lichtner PC (1988) The quasistationary state approximation to coupled mass transport and fluidrock interaction in porous media. Geochim Cosmochim Acta 52:143–165

    Article  Google Scholar 

  • Logan BE, Jewett DG, Arnold RG, Bouwer EJ, Omelia CR (1995) Clarification of clean-bed filtration models. J Environ Eng ASCE 121:869–873

    Article  Google Scholar 

  • Margolin G, Dentz M, Berkowitz B (2003) Continuous time random walk and multirate mass transfer modeling of sorption. Chem Phys 295:71–80

    Article  Google Scholar 

  • Martin MJ, Logan BE, Johnson WP, Jewett DG, Arnold RG (1996) Scaling bacterial filtration rates in different sized porous media. J Environ Eng 122:407–415

    Article  Google Scholar 

  • McDowell LL, Willis GH, Murphree CE (1984) Plant nutrient yields in runoff from a Mississippi delta watershed. Trans ASAE 27:1059–1066

    Google Scholar 

  • McDowell-Boyer L, Hunt JR, Sitar N (1986) Particle transport through porous media. Water Resour Res 22:1901–1921

    Article  Google Scholar 

  • Menzel RG, Rhoade ED, Onless AE, Smith SJ (1978) Variability of annual nutrient and sediment discharge in runoff from Okalahoma cropland and rangeland. J Environ Qual 7:401–406

    Article  Google Scholar 

  • Michaelides K, Wilson MD (2007) Uncertainty in predicted runoff due to patterns of spatially variable infiltration. Water Resour Res 43:W02415

    Article  Google Scholar 

  • Miller CT, Poirier-McNeill MM, Mayer AS (1990) Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resour Res 26:2783–2796

    Article  Google Scholar 

  • Morse JW, Arvidson RS (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58:51–84

    Article  Google Scholar 

  • Novak CF (1993) Modelling mineral dissolution and precipitation in dual-porosity fracture-matrix system. J Contam Hydrol 13:91–115

    Article  Google Scholar 

  • Novak CF, Lake LW (1989) Diffusion and solid dissolution/precipitation in permeable media. AIChE J 35:1057–1072

    Article  Google Scholar 

  • Ovdat H, Berkowitz B (2006) Pore-scale study of drainage displacement under combined capillary and gravity effects in index-matched porous media. Water Resour Res 42:W06411

    Article  Google Scholar 

  • Palmer AN (1996) Rates of limestone dissolution and calcite precipitation in cave streams of east-central New York state, northern section. Geol Soc Am 28:89

    Google Scholar 

  • Powers SE, Abriola LM, Weber WJ Jr (1992) An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems—steady state mass transfer rates. Water Resour Res 28:2691–2705

    Article  Google Scholar 

  • Proffitt APB, Rose CW, Hairsine PB (1991) Rainfall detachment and deposition. Experiments with low slopes and significant water depth. Soil Sci Soc Am J 55:325–332

    Article  Google Scholar 

  • Rajagopalan R, Tien C (1976) Trajectory analysis of deep bed filtration with the sphere-in-cell porous media model. AIChE J 3:523–533

    Article  Google Scholar 

  • Redman JA, Grant SB, Olson TM, Estes MK (2001) Pathogen filtration, heterogeneity, and the potable reuse of wastewater. Environ Sci Technol 35:1798–1805

    Article  Google Scholar 

  • Redman JA, Walker SL, Elimelech M (2004) Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ Sci Technol 38:1777–1785

    Article  Google Scholar 

  • Reeves CP, Celia MA (1996) A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model. Water Resour Res 32:2345–2358

    Article  Google Scholar 

  • Rose CW (1993) The transport of adsorbed chemicals in eroded sediments. In: Russo D, Dagan G (eds) Water flow and solute transport in soils. Springer, Heidelberg, pp 180–199

    Chapter  Google Scholar 

  • Rubin S, Dror I, Berkowitz B (2012) Experimental and modeling analysis of coupled non-Fickian transport and sorption in natural soils. J Contam Hydrol 132:28–36

    Article  Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids Surf A 107:1–56

    Article  Google Scholar 

  • Saiers JE, Hornberger GM (1996) The role of colloidal kaolinite in the transport of cesium through laboratory sand columns. Water Resour Res 32:33–41

    Article  Google Scholar 

  • Saripalli PK, Kim H, Suresh P, Rao C, Annable DM (1997) Measurements of specific fluid–fluid interfacial areas of immiscible fluids in porous media. Environ Sci Technol 31:932–936

    Article  Google Scholar 

  • Schaefer C, DiCarlo DA, Blunt MJ (2000) Determination of water–oil interfacial area during three-phase gravity drainage in porous media. J Colloid Interface Sci 221:308–312

    Article  Google Scholar 

  • Schwille F (1988) Dense chlorinated solvents in porous and fractured media. Lewis Publishers CRC Press, Boca Raton

    Google Scholar 

  • Singurindy O, Berkowitz B (2003) Evolution of hydraulic conductivity by precipitation and dissolution in carbonate rock. Water Resour Res 39:1016

    Google Scholar 

  • Starr RC, Gillham RW, Sudicky EA (1985) Experimental investigation of solute transport in stratified porous media: the reactive case. Water Resour Res 21:1043–1050

    Article  Google Scholar 

  • Toride N, Leij F, van Genuchten M (1995), The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, version 2.0. Res. Rep. 137, U.S. Salinity Lab, Riverside

    Google Scholar 

  • Tufenkji N, Elimelech M (2004) Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ Sci Technol 38:529–536

    Article  Google Scholar 

  • Wallach R, Grogorin G, Rivlin (Byk) J (1997) The errors in surface runoff prediction by neglecting the relationship between infiltration rate and overland flow depth. J Hydrol 200:243–259

    Article  Google Scholar 

  • Walton RS, Volker RE, Bristow KL, Smettem KRJ (2000) Experimental examination of solute transport by surface runoff from low-angle slopes. J Hydrol 233:19–36

    Article  Google Scholar 

  • Wiesner MR, Characklis G, Brejchova D (1995) Colloidal contaminants in urban runoff. In: Proceedings of the 21st annual RREL research symposium, Cincinnati, OH, April, United State Environmental Protection Agency, EPA/600/R-95/012

    Google Scholar 

  • Wilkinson D (1984) Percolation model of immiscible displacement in the presence of buoyancy forces. Phys Rev A 30:520–531

    Article  Google Scholar 

  • Wilkinson D (1986) Percolation effects in immiscible displacement. Phys Rev A 34:1380–1391

    Article  Google Scholar 

  • Wilkinson D, Willemsen JF (1983) Invasion percolation: a new form of percolation theory. J Phys A 34:1380–1391

    Google Scholar 

  • Yao K-M, Habibian MT, O’Melia CR (1971) Water and waste water filtration: concepts and applications. Environ Sci Technol 5:1105–1112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Berkowitz .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berkowitz, B., Dror, I., Yaron, B. (2014). Transport of Reactive Contaminants. In: Contaminant Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54777-5_11

Download citation

Publish with us

Policies and ethics