Skip to main content

Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty

  • Conference paper
  • First Online:
Efficient Algorithms for Global Optimization Methods in Computer Vision

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8293))

Abstract

We study and extend the recently introduced total generalized variation (TGV) functional for multichannel images. This functional has already been established to constitute a well-suited convex model for piecewise smooth scalar images. It comprises exactly the functions of bounded variation but is, unlike purely total-variation based functionals, also aware of higher-order smoothness. For the multichannel version which is developed in this paper, basic properties and existence of minimizers for associated variational problems regularized with second-order TGV is shown. Furthermore, we address the design of numerical solution methods for the minimization of functionals with TGV\(^2\) penalty and present, in particular, a class of primal-dual algorithms. Finally, the concrete realization for various image processing problems, such as image denoising, deblurring, zooming, dequantization and compressive imaging, are discussed and numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberti, G., Bouchitté, G., Maso, D.D.: The calibration method for the Mumford-Shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Equ. 16(3), 299–333 (2003)

    Article  MATH  Google Scholar 

  2. Bredies, K., Dong, Y., Hintermüller, M.: Spatially dependent regularization parameter selection in total generalized variation models for image restoration. Int. J. Comput. Math. 90(1), 109–123 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bredies, K., Holler, M.: A total variation-based JPEG decompression model. SIAM J. Imaging Sci. 5(1), 366–393 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. In: Proceedings of SampTA 2011, 9th International Conference on Sampling Theory and Applications (2011)

    Google Scholar 

  6. Bredies, K., Holler, M.: Artifact-free JPEG decompression with total generalized variation. In: VISAPP 2012: Proceedings of the International Conference on Computer Vision Theory and Applications (2012)

    Google Scholar 

  7. Bresson, X., Chan, T.F.C.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imaging 2(4), 455–484 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, T.F., Esedoglu, S., Park, F.E.: Image decomposition combining staircase reduction and texture extraction. J. Visual Commun. Image Represent. 18(6), 464–486 (2007)

    Article  Google Scholar 

  11. Dong, Y., Hintermüller, M., Rincon-Camacho, M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40, 82–104 (2011)

    Article  MATH  Google Scholar 

  12. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J., Sun, T., Kelly, K., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Proc. Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  13. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76, 109–133 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. \(\hat{}\) @ \(\hat{}\) ina@Flickr: Alina’s eye. Licenced under CreativeCommons-by-2.0 ( http://creativecommons.org/licenses/by/2.0/). http://www.flickr.com/photos/angel_ina/3201337190 (2009)

  16. Klöckner, A.: PyCUDA 2011.2.2. http://mathema.tician.de/software/pycuda

  17. Kubina, J.: Bubble popper. Licenced under CreativeCommons-by-sa-2.0 (http://creativecommons.org/licenses/by-sa/2.0/). http://www.flickr.com/photos/kubina/42275122 (2005)

  18. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590 (2003)

    Article  MATH  Google Scholar 

  20. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. NIVIDA Corporation: CUDA toolkit 4.0. http://www.nvidia.com/getcuda

  23. Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image reconstruction. ArXiv e-print 1202.6341 (2012)

    Google Scholar 

  24. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: IEEE 12th International Conference on Computer Vision (ICCV). pp. 1133–1140 (2009)

    Google Scholar 

  25. Python Software Foundation: Python programming language 2.6. http://www.python.org/

  26. Rice Single-Pixel Camera Project: CS camera data. http://dsp.rice.edu/cscamera

  27. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  29. Schristia@Flickr: 1, 2, 3. Licenced under CreativeCommons-by-2.0 (http://creativecommons.org/licenses/by/2.0/). http://www.flickr.com/photos/schristia/4057490235 (2009)

  30. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15(1), 189–258 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  31. Steve-h@Flickr: Wet green smiles. Licenced under CreativeCommons-by-sa-2.0 (http://creativecommons.org/licenses/by-sa/2.0/). http://www.flickr.com/photos/sbh/3859041020 (2009)

  32. Steve-h@Flickr: Oak leaves and bokeh. Licenced under CreativeCommons-by-sa-2.0 (http://creativecommons.org/licenses/by-sa/2.0/). http://www.flickr.com/photos/sbh/6802942537 (2012)

  33. Temam, R.: Mathematical Problems in Plasticity. Bordas, Paris (1985)

    Google Scholar 

  34. The Scipy Community: Scientific tools for Python. http://www.scipy.org/

  35. Vese, L.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Opt. 44, 131–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ring, W.: Structural properties of solutions to total variation regularization problems. ESAIM: Math. Model. Num. 34(4), 799–810 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Support by the Austrian Science Fund (FWF) under grant SFB F32 (SFB “Mathematical Optimization and Applications in Biomedical Sciences”) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Bredies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bredies, K. (2014). Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty. In: Bruhn, A., Pock, T., Tai, XC. (eds) Efficient Algorithms for Global Optimization Methods in Computer Vision. Lecture Notes in Computer Science(), vol 8293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54774-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54774-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54773-7

  • Online ISBN: 978-3-642-54774-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics