Skip to main content

Wildlife Surveys in Agricultural Landscapes: Terrestrial Medium- to Large-Sized Mammals

  • Chapter
  • First Online:
  • 1352 Accesses

Abstract

Human-induced changes have drastically modified pristine environments, and the replacement of natural ecosystems constrained the composition and structure of communities that they are made of, due to the modification of ecological processes. Survey and monitoring sampling schemes have been defined and mostly applied to natural environments, which are characterized by a spatial and structural heterogeneity. However, their application to agroforestry areas should take into consideration that these environments are spatially more homogeneous, but present a temporal heterogeneity linked with the production cycles. In this chapter, we present a description of the assumptions, weaknesses, and strengths of the main methods used in surveying and monitoring medium and large mammals. Moreover, we advise researchers to the need to take into consideration the particularities of agroforestry landscapes and adapt the mentioned methods to assure the representativeness of the collected data and the accuracy of the detected patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya KP (2006) Linking tree on farms with biodiversity conservation in subsistence farming in Nepal. Biodiver Conserv 15:631–646

    Article  Google Scholar 

  • Ascensão F, Mira A (2007) Factors affecting culvert use by vertebrates along two stretches of road in southern Portugal. Ecol Res 22:57–66

    Article  Google Scholar 

  • Balée W (2014) Historical ecology and the explanation of diversity: Amazonian Case Studies. In: Verdade LM, Lyra-Jorge MC, Piña CI (eds) Applied ecology and human dimensions in biological conservation. Springer, Heidelberg

    Google Scholar 

  • Bider JR (1968) Animal activity in uncontrolled terrestrial communities as determined by sand transect technique. Ecol Monogr 38:269–308

    Article  Google Scholar 

  • Bignal EM (1998) Using an ecological understanding of farmland to reconcile nature conservation requirements, EU agriculture policy and world trade agreements. J Appl Ecol 35:949–954

    Article  Google Scholar 

  • Borralho R, Rego F, Palomares F, Hora A (1995) The distribution of the Egyptian mongoose Herpestes ichneumon (L.) in Portugal. Mamm Rev 25:229–236

    Google Scholar 

  • Carbone C, Christie S, Conforti K, Coulson T, Franklin N, Ginsberg JRI (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim Conserv 4:75–79

    Article  Google Scholar 

  • Conner MC, Labisky RF, Progulske DR (1983) Scent-station indices as measures of population abundance for bobcats, raccoons, gray foxes, and opossums. Wildl Soc Bull 11:146–152

    Google Scholar 

  • Comin FH, Gheler-Costa C, Verdade LM, Garavello MEP (2009) Relações e conflitos na conservação ambiental da bacia do rio Passa-Cinco, São Paulo, Brasil. OLAM 9:254–274

    Google Scholar 

  • Coonan TJ, Schwemm CA, Roemer GW, Garcelon DK, Munson L (2005) Decline of an Island fox subspecies to near extinction. SW Nat 50:32–41

    Article  Google Scholar 

  • Cuarón AD, Martínez-Morales MA, McFadden KW, Valenzuela D, Gompper ME (2004) The status of dwarf carnivores on Cozumel Island, Mexico. Biodiver Conserv 13:317–331

    Article  Google Scholar 

  • Cuesta F, Peralvo MF, Frank T, van Manen FT (2003) Andean bear habitat use in the Oyacachi river Basin, Ecuador. Ursus 14:198–209

    Google Scholar 

  • Diáz M, Campos P, Pulido FJ (1997) The Spanish dehesas: a diversity in land-use and wildlife. In: Pain DJ, Pienkowski MW (eds) Farming and birds in Europe: the common agriculture policy and its implication for birds conservation. Academic Press LDA, London, pp 178–209

    Google Scholar 

  • Daily G, Ceballos G, Pacheco J, Suzán G, Sanchéz-Azofeifa A (2003) Countryside biogeography of Neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv Biol 17:1814–1826

    Article  Google Scholar 

  • Faria D, Laps RR, Baumgarten J, Cetra M (2006) Bat and bird assemblages from forests and shade cacao plantations in two contrasting landscapes in the Atlantic forest of southern Bahia, Brazil. Biodiver Conserv 15:587–612

    Article  Google Scholar 

  • Fahrig L, Merriam G (1995) Conservation of fragmentation populations. In: Ehrenfeld D (ed) Readings from conservation biology—the landscape perspective. Blackwell, Cambridge, pp 16–25

    Google Scholar 

  • Fuller TK, Sampson BA (1988) Evaluation of a simulated howling survey for wolves. J Wildl Manag 52:60–63

    Article  Google Scholar 

  • Gaidet-Drapier N, Fritz H, Bougarel M, Renaud PC, Poilecot P, Chardonet P, Coid C, Poulet D, Le Bel S (2006) Cost and efficiency of large mammal census techniques: comparison of methods for a participatory approach in a communal area, Zimbabwe. Biodiver Conserv 15:735–754

    Article  Google Scholar 

  • Gheler-Costa C, Vettorazzi CA, Pardini R, Verdade LM (2012) The distribution and abundance of small mammals in agroecosystems of south-eastern Brazil. Mammalia 76:185–191

    Article  Google Scholar 

  • Grove AT, Rackham O (2003) The nature of Mediterranean Europe. An ecological history. Yale University Press, New Haven

    Google Scholar 

  • Hanby JP, Bygott D (1979) Population changes in lions and other predators. In: Sinclair AR, Norton-Griffiths M (eds) Serengeti: dynamics of an ecosystem. University of Chicago Press, Chicago, pp 249–262

    Google Scholar 

  • Hansen LA, Mathews NE, Lee BAV, Lutz R (2004) Population characteristics, survival rates, and causes of mortality of striped skunks (Mephitis mephitis) on the southern High Plains, Texas. SW Nat 49:54–60

    Article  Google Scholar 

  • Harvey C, Gonzalez J, Somarriba E (2006) Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodiver Conserv 15:555–585

    Article  Google Scholar 

  • Hawkins CE, Racey PA (2005) Low population density of a tropical forest carnivore, Cryptoprocta ferox: implications for protected area management. Oryx 39:35–43

    Article  Google Scholar 

  • Henle K, Linddenmayer DB, Margules CR, Saunders DA, Wissel C (2004) Species survival in fragmented landscapes: where are we now? Biodiver Conserv 13:1–8

    Article  Google Scholar 

  • Huntington HP (2000) Using traditional ecological knowledge in science: methods and applications. Ecol Appl 10:1270–1274

    Article  Google Scholar 

  • Lancia RA, Nichols JD, Pollock KH (1996) Estimating the number of animals in wildlife populations. In: Bookhout TA (ed) Research and management techniques for wildlife and habitats, 5th edn. The Wildlife Society, Bethesda, pp 215–253

    Google Scholar 

  • Lindenmayer D, Burgman M (2005) Practical conservation biology. CSIRO Publishing, Collingwood

    Google Scholar 

  • Linhart SB, Knowlton FF (1975) Determining the relative abundance of coyotes by scent station lines. Wildl Soc Bull 3(3):119–124

    Google Scholar 

  • Long RA, MacKay P, Zielinski WJ, Ray JC (2008) Noninvasive survey methods for carnivores. Island Press, Washington, DC

    Google Scholar 

  • Long R, Donovan T, MacKay P, Zielinski W, Buzas J (2011) Predicting carnivore occurrence with non-invasive surveys and occupancy modelling. Landsc Ecol 26:327–340

    Article  Google Scholar 

  • Luniak M (2004) Synurbization—adaptation of animal wildlife to urban development. In: Proceedings of the 4th international symposium on urban wildlife conservation, Tucson, Arizona, University of Tucson, Tucson 1–5 May 1999, pp 50–55

    Google Scholar 

  • Lunt ID, Spooner PG (2005) Using historical ecology to understand patterns of biodiversity in fragmented agricultural landscapes. J Biogeogr 32:1859–1873

    Article  Google Scholar 

  • Lyra-Jorge MC, Ciocheti G, Pivello VR (2008a) Carnivore mammals in a fragmented landscape in northeast of São Paulo State, Brazil. Biodiver Conserv 17:1573–1580

    Article  Google Scholar 

  • Lyra-Jorge MC, Ciocheti G, Pivello VR, Meirelles ST (2008b) Comparing methods for sampling large—and medium-sized mammals: camera traps and track plots. Eur J Wildl Res 54:739–744

    Article  Google Scholar 

  • Manzo E, Bartolommei P, Rowcliffe JM, Cozzolino R (2011) Estimation of population density of European pine marten in central Italy using camera trapping. Acta Theriol 57:165–172

    Article  Google Scholar 

  • Martin PS, Gheler-Costa C, Lopes PC, Rosalino LM, Verdade LM (2012) Terrestrial non-volant small mammals in agro-silvicultural landscapes of Southeastern Brazil. For Ecol Manag 282:185–195

    Article  Google Scholar 

  • McDougall PT, Réale D, Sol D, Reader SM (2006) Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive reintroduced and wild populations. Anim Conserv 9:39–48

    Article  Google Scholar 

  • Moguel P, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:11–21

    Article  Google Scholar 

  • Morán-López R, Guzmán JM, Borrego EC, Sánchez AV (2006) Nest-site selection of endangered cinereous vulture populations affect by anthropogenic disturbance: present and future conservation implications. Anim Conserv 9:29–37

    Article  Google Scholar 

  • Palomares F, Godoy JA, Piriz A, O'Brien SJ, Johnson WE (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11:2171–2182

    Google Scholar 

  • Preston FW (1960) Time and space and the variation of species. Ecology 41:612–627

    Article  Google Scholar 

  • Price K (1994) Center-edge effect in red squirrels: evidence from playback experiments. J Mammal 75:545–548

    Article  Google Scholar 

  • Prigioni C, Remonti L, Balestrieri A, Sgrosso S, Priore G, Mucci N, Randi EI (2006) Estimation of European otter (Lutra lutra) population size by fecal DNA typing in southern Italy. J Mammal 87:855–858

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzon FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biolog Conserv 142:1141–1153

    Article  Google Scholar 

  • Rosalino LM, Macdonald DW, Santos-Reis M (2004) Spatial structure and land-cover use in a lowdensity Mediterranean population of Eurasian badgers. Can J Zool 82:1493–1502

    Article  Google Scholar 

  • Rosalino LM, Lyra-Jorge MC, Verdade LM (2014) Adaptation and evolution in changing environments. In: Verdade LM, Lyra-Jorge MC, Piña, CI (eds) Applied ecology and human dimensions in biological conservation, Springer-Verlag, Berlin

    Google Scholar 

  • Rosalino LM, Macdonald DW, Santos-Reis M (2005) Resource dispersion and badger population density in Mediterranean woodlands: is food, water or geology the limiting factor? Oikos 110:441–452

    Article  Google Scholar 

  • Rosalino LM, Rosário J, Santos-Reis M (2009) The role of habitat patches on mammalian diversity in cork oak agroforestry systems. Acta Oecol 35:507–512

    Article  Google Scholar 

  • Ruette S, Stahl P, Albaret M (2003) Applying distance-sampling methods to spotlight counts of red foxes. J Appl Ecol 40:32–43

    Article  Google Scholar 

  • Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. J Appl Ecol 45:1228–1236

    Article  Google Scholar 

  • Rudran R, Kunz TH, Southwell C, Jarman P, Smith A (1996) Observational techniques for non-volant mammals. In: Wilson DE, Cole FR, Nichols JD, Rudran R (eds) Foster MS measuring and monitoring biological diversity. standard methods for mammals. Smithsonian Institution Press, Washington, DC, pp 81–103

    Google Scholar 

  • Sales-Luís T, Bissonette JA, Santos-Reis M (2012) Conservation of Mediterranean otters: the influence of map scale resolution. Biodiver Conserv 21:2061–2073

    Article  Google Scholar 

  • Sánchez-Hernández C, Romero-Almaraz ML, Colín-Martinez H, García-Estrada C (2001) Mamíferos de cuatro áreas com diferente grado de alteración en el sureste de México. Acta Zool Mex 84:35–48

    Google Scholar 

  • Sarmento PB, Cruz JP, Eira CI, Fonseca C (2010) Habitat selection and abundance of common genets Genetta genetta using camera capture-mark recapture data. Eur J Wildl Res 56:59–66

    Article  Google Scholar 

  • Smallwood KS, Fitzhugh EL (1995) A track count for estimating mountain lion Felis concolor californica population trend. Biolog Conserv 71:251–259

    Article  Google Scholar 

  • Soisalo MK, Cavalcanti SM (2006) Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture–recapture sampling in combination with GPS radio-telemetry. Biolog Conserv 129:487–496

    Article  Google Scholar 

  • Soberón J, Llorente J (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488

    Article  Google Scholar 

  • Srbek-Araújo AC, Chiarello AG (2007) Armadilhas fotográficas na amostragem de mamíferos: considerações metodológicas e comparação de equipamentos. Rev Bras Zool 24:647–656

    Article  Google Scholar 

  • Sutherland WJ (2006) Ecological census techniques—a handbook. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tabeni S, Ojeda RA (2005) Ecology of the desert small mammals in disturbed and undisturbed habitats. J Mammal 70:416–420

    Google Scholar 

  • Travaini A, Laffitte R, Delibes M (1996) Determining the relative abundance of European red foxes by scent-station methodology. Wildl Soc Bull 24:500–504

    Google Scholar 

  • Turner BL II, Meyer WB (1994) Global land use and land cover change: an overview. In: Meyer WB, Turner BL II (eds) Changes in land use and land cover: a global perspective. Cambridge University Press, Cambridge, pp 3–12

    Google Scholar 

  • Vandermeer J, Perfecto I (1997) The agroecosystem: a need for the conservation biologist’s lens. Conserv Biol 11:591–592

    Article  Google Scholar 

  • Verdade LM, Moreira JR, Ferraz KMPMB (2012) Counting capybaras. In: Moreira JR, Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional Neotropical species. Springer, New York, pp 357–370

    Google Scholar 

  • Verdade LM, Rosalino LM, Gheler-Costa C, Pedroso NM, Lyra-Jorge MC (2011) Adaptation of mesocarnivores (Mammalia: Carnivora) to agricultural landscapes of Mediterranean Europe and southeastern Brazil: a trophic perspective. In: Rosalino LM, Gheler-Costa C (eds) Middle-sized carnivores in agricultural landscapes. Nova Science Publishers, New York, pp 1–38

    Google Scholar 

  • Verdade LM, Penteado M, Gheler-Costa C, Dotta G, Rosalino LM, Pivello VR, Lyra-Jorge MC (2014a) The conservation value of agricultural landscapes. In: Verdade LM, Lyra-Jorge MC, Piña CI (eds) Applied ecology and human dimensions in biological conservation. Springer, Heidelberg

    Google Scholar 

  • Verdade LM, Lyra-Jorge MC, Piña CI (2014b) Redirections in conservation biology. In: Verdade LM, Lyra-Jorge MC, Piña CI (eds) Applied ecology and human dimensions in biological conservation. Springer, Heidelberg

    Google Scholar 

  • Voss RS, Emmons LH (1996) Mammalian diversity in Neotropical lowland rainforest: a preliminary assessment. Bull Am Mus Nat Hist 230:1–115

    Google Scholar 

  • Waser PM (1977) Individual recognition, intragroup cohesion and intergroup spacing: evidence from sound playback to forest monkeys. Behaviour 60:28–74

    Article  Google Scholar 

  • Wemmer C, Kunz TH, Lundie-Jenkins G, McShea WJ (1996) Mammalian sings. In: Wilson DE, Cole FR, Nichols JD, Rudran R, Foster MS (eds) Measuring and monitoring biological diversity. Smithsonian Institution Press, Washington, Standard methods for mammals, pp 157–176

    Google Scholar 

  • With K, Gardner R, Turner M (1997) Landscape connectivity and population distributions in heterogeneous environments. Oikos 78:151–169

    Article  Google Scholar 

  • Yamada K, Elith J, McCarthy M, Zerger A (2003) Eliciting and integrating expert knowledge for wildlife habitat modelling. Ecol Model 165:251–264

    Article  Google Scholar 

  • Zielinski WJ, Kucera TE (1995) American marten, fisher, lynx, and wolverine: survey methods for their detection. General technical report PSW GTR-157. United States Department of Agriculture, Forest Service, Berkeley

    Google Scholar 

  • Zielinski WJ, Truex RL, Schmidt GA, Schlexer FV, Schmidt KN, Barrett RH (2004) Home range characteristics of fishers in California. J Mammal 85:649–657

    Article  Google Scholar 

  • Zoellick BW, Ulmschnieder HM, Stanley AW (2005) Distribution and composition of mammalian predators along the Snake river in southwestern Idaho. NW Sci 79:265–272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carolina Lyra-Jorge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lyra-Jorge, M.C., Gheler-Costa, C., Piña, C.I., Rosalino, L.M., Verdade, L.M. (2014). Wildlife Surveys in Agricultural Landscapes: Terrestrial Medium- to Large-Sized Mammals. In: Verdade, L., Lyra-Jorge, M., Piña, C. (eds) Applied Ecology and Human Dimensions in Biological Conservation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54751-5_9

Download citation

Publish with us

Policies and ethics