Skip to main content

The Use of Stable Isotopes Analysis in Wildlife Studies

  • Chapter
  • First Online:
  • 1424 Accesses

Abstract

The application of stable isotopes analysis in wildlife studies has increased in recent decades due to the wide range of information that can be obtained with this methodology. This chapter aims to present the basic principles of the stable isotopes analysis and their potential applications in wildlife studies. The main topics presented are diet reconstruction, trophic level, animal movements, tissue turnover rates, and ecotoxicology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams TS, Sterner RW (2000) The effect of dietary nitrogen on trophic level 15N enrichment. Limnol Oceanogr 45:601–607

    CAS  Google Scholar 

  • Alisauskas RT, Klaas EE, Hobson KA, Ankney CD (1998) Stable-carbon isotopes support use of adventitious color to discern winter origins of lesser snow geese. J Field Ornithol 69:262–268

    Google Scholar 

  • Ambrose SH (1990) Preparation and characterization of bone and tooth collagen for isotopic analysis. J Archaeol Sci 17:431–451

    Google Scholar 

  • Arrington DA, Winemiller KO (2002) Preservation effects on stable isotope analysis of fish muscle. Trans Am Fisher Soc 131:337–342

    CAS  Google Scholar 

  • Atwell L, Hobson KA, Welch HE (1998) Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Can J Fish Aquat Sci 55:1114–1121

    CAS  Google Scholar 

  • Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factor that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458

    CAS  PubMed  Google Scholar 

  • Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440

    Google Scholar 

  • Borga K, Fisk AT, Hoekstra PF, Muir DCG (2004) Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ Toxicol Chem 23:2367–2385

    CAS  PubMed  Google Scholar 

  • Borteiro C, Gutiérrez F, Tedrosa M, Kolenc F (2009) Food habits of the Broad-snouted Caiman (Caiman latirostris: Crocodylia, Alligatoridae) in northwestern Uruguay. Stud Neoptrop Fauna Envir 44:31–36

    Google Scholar 

  • Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348

    PubMed  Google Scholar 

  • Broman D, Naf C, Rolff C, Zebuhr Y, Fry B, Hobbie J (1992) Using ratios of stable nitrogen isotopes to estimate bioaccumulation and flux of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in two food chains from the northern Baltic. Environ Toxicol Chem 11:331–345

    CAS  Google Scholar 

  • Campbell LM, Fisk AT, Wang X, Kock G, Muir DCG (2005) Evidence for biomagnification of rubidium in freshwater and marine foodwebs. Can J Fish Aquat Sci 62:1161–1167

    CAS  Google Scholar 

  • Camusso M, Martinotti W, Balestrini R, Guzzi L (1998) C and N stable isotopes and trace metals in selected organisms from the River Po Delta. Chemosphere 37:2911–2920

    CAS  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    CAS  Google Scholar 

  • Chamberlain CP, Blum JD, Holmes RT, Feng XH, Sherry TW, Graves GR (1997) The use of isotope tracers for identifying populations of migratory birds. Oecologia 109:132–141

    Google Scholar 

  • Chisholm B, Driver J, Dube S, Schwarcz HP (1986) Assessment of prehistoric bison foraging and movement patterns via stable-carbon isotope analysis. Plains Anthropol 31:193–205

    Google Scholar 

  • Clementz MT (2012) New insight from old bones: stable isotope analysis of fossil mammals. J Mammal 93:368–380

    Google Scholar 

  • Crawford K, McDonald RA, Bearhop S (2008) Applications of stable isotope techniques to the ecology of mammals. Mammal Rev 38:87–107

    Google Scholar 

  • Dalerum F, Angerbjörn A (2005) Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144:647–658

    CAS  PubMed  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 5:436–468

    Google Scholar 

  • Das K, Holsbeek L, Browning J, Siebert U, Birkun A, Bouquegneau JM (2004) Trace metal and stable isotope measurements (δ13C and δ15N) in the harbour porpoise Phocoena phocoena relicta from the Black sea. Environ Pollut 131:197–204

    CAS  PubMed  Google Scholar 

  • DeNiro MJ (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806–809

    CAS  Google Scholar 

  • DeNiro MJ (1987) Stable isotopy and archaeology. Am Sci 75:182–191

    Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    CAS  Google Scholar 

  • Di Beneditto APM, Bittar VT, Rezende CE, Camargo PB, Kehrig HÁ (2013) Mercury and stable isotopes (δ15N and δ13C) as tracers during the ontogeny of Trichiurus lepturus. Neotrop Ichthyol 11:211–216

    Google Scholar 

  • Erhardt EB, Bedrick EJ (2013) A Bayesian framework for stable isotope mixing models. Environ Ecol Stat 20:377–397

    CAS  Google Scholar 

  • Estrada JA, Rice AN, Lutcavage ME, Skomal GB (2003) Predicting trophic position in sharks of the north-west Atlantic ocean using stable isotope analysis. J Mar Biol Ass UK 83:1347–1350

    CAS  Google Scholar 

  • Ethier DM, Kyle CJ, Kyser TK, Nocera JJ (2010) Variability in the growth patterns of the cornified claw sheath among vertebrates: implications for using biogeochemistry to study animal movement. Can J Zool 88:1043–1051

    Google Scholar 

  • Fleming TH, Nuñez RA, Sternberg LSL (1993) Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia 94:72–75

    Google Scholar 

  • Fox GA, Grasman KA, Hobson KA, Williams K, Jeffrey D, Hanbridge B (2002) Contaminant residues in tissues of adult and prefledged herring gulls from the Great Lakes in relation to diet in the early 1990s. J Great Lakes Res 28:643–663

    CAS  Google Scholar 

  • Fry B (1991) Stable isotope diagrams of freshwater food webs. Ecology 72:2293–2297

    Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer, Berlin

    Google Scholar 

  • Gannes LZ, O’Brien D, del Rio CM (1997) Stable isotopes in animal ecology: assumptions, caveats, and a call for laboratory experiments. Ecology 78:1271–1276

    Google Scholar 

  • Gannes LZ, Rio CM, Kouch P (1998) Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comp Biochem Physiol 119:725–737

    CAS  Google Scholar 

  • Garcia E, Carignan R (2009) Mercury concentrations in fish from forest harvesting and fire-impacted Canadian Boreal lakes compared using stable isotopes of nitrogen. Environ Toxicol Chem 24:685–693

    Google Scholar 

  • Gobas FAPC, Zhang X, Wells R (1993) Gastrointestinal magnifications: the mechanism of biomagnification and food chain accumulation of organic chemicals. Environ Sci Technol 27:2855–2863

    CAS  Google Scholar 

  • Gobas FAPC, Morrison HA (2000) Bioconcentration and bioaccumulation in the aquatic environment. In: Boethling R, Mackay D (eds) Handbook of property estimation methods for chemicals: environmental and health sciences. CRC Press LLC, Boca Raton, pp 189–231

    Google Scholar 

  • González-Prieto AM, Hobson KA, Bayly NJ, Gómez C (2011) Geographic origins and timing of fall migration of the veery in Northern Colombia. Condor 113:860–868

    Google Scholar 

  • Greenwood JL, Dawson RD (2011) Correlates of deuterium (δD) enrichment in the feathers of adult American Kestrels of known origin. Condor 113:555–564

    Google Scholar 

  • Hall BD, Bodaly RA, Fudge RJP, Rudd JWM, Rosenberg DM (1997) Food as the dominant pathway of methylmercury uptake by fish. Water Air Soil Pollut 100:13–24

    CAS  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Google Scholar 

  • Hobson KA (2005) Using stable isotopes to trace long-distance dispersal in birds and other taxa. Divers Distrib 11:157–164

    Google Scholar 

  • Hobson KA (2008) Using endogenous and exogenous markers in bird conservation. Bird Conserv Internat 18:S174–S199

    Google Scholar 

  • Hobson KA, Clark RW (1992) Assessing avian diets using stable isotopes: turnover of carbon-13. Condor 94:181–188

    Google Scholar 

  • Hobson KA, Clark RG (1993) Turnover of δ13C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110:638–641

    Google Scholar 

  • Hobson KA, Wassenaar LI (1997) Linking brooding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109:142–148

    Google Scholar 

  • Hobson KA, Wassenaar LI (2008) Tracking animal migration with stable isotopes. Academic Press, San Diego

    Google Scholar 

  • Hobson KA, Alisaiskas RT, Clark RG (1993) Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analysis of diet. Condor 95:388–394

    Google Scholar 

  • Hobson KA, Van Wilgenburg SL, Wassenaar LI, Larson K (2012) Linking hydrogen (δ2H) isotopes in feathers and precipitation: sources of variance and consequences for assignment to isoscapes. PLoS ONE 7:e35137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hobson KA, Wassenaar LI, Milá B, Lovette I, Dingle C, Smith TB (2003) Stable isotopes as indicators of altitudinal distributions and movements in an Ecuadorean hummingbird community. Oecologia 136:302–308

    PubMed  Google Scholar 

  • Inguer R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461

    Google Scholar 

  • Jacob AA, Rudran R (2003) Radiotelemetria em estudos populacionais. In: Cullen Júnior L, Rudan R, Valladares-Padua C (eds.) Métodos de estudos em biologia da conservação & manejo da vida silvestre. Editora da Universidade Federal do Paraná, Curitiba, Brasil, 285–342

    Google Scholar 

  • Jardine TD, Kidd KA, Fisk AT (2006) Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environ Sci Technol 40(24):7501–7511

    CAS  PubMed  Google Scholar 

  • Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27

    Google Scholar 

  • Kidd KA, Schindler DW, Hesslein RH, Muir DCG, Lockhart WL, Hesslein RH (1995) High concentrations of toxaphene in fishes from a subarctic lake. Science 269:240–242

    CAS  PubMed  Google Scholar 

  • Koch PL (2007) Isotopic study of the biology of modern and fossil vertebrates. In: Michener RH, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Boston, MA, pp 99–154

    Google Scholar 

  • Lara NRF, Marques TS, Montelo KM, Ataídes AG, Verdade LM, Malvásio A, Camargo PB (2012) A trophic study of the sympatric Amazonian freshwater turtles Podocnemis unifilis and Podocnemis expansa (Testudines, Podocnemidae) using carbon and nitrogen stable isotope analyses. Can J Zool 90:1394–1401

    CAS  Google Scholar 

  • Layman CA, Araújo MS, Boucek R, Harrison E, Jud ZR, Matich P, Hammerschlag-Peyer CM, Rosenblatt A, Vaudo J, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food web structure: an overview of analytical tools. Biol Rev 87:545–562

    PubMed  Google Scholar 

  • Litvaitis JA (2000) Investigating food habits of terrestrial vertebrates. In: Boitani L, Fuller TK (eds) Research techniques in animal ecology: controversies and consequences. Columbia University Press, New York, pp 165–190

    Google Scholar 

  • MacAvoy SE, Macko SA, Arneson LS (2005) Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis. Can J Zool 83:631–641

    CAS  Google Scholar 

  • MacFadden BJ (2000) Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annu Rev Ecol Syst 31:33–59

    Google Scholar 

  • MacFadden B, Solounias N, Cerling TE (1999) Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 283:824–827

    CAS  PubMed  Google Scholar 

  • Macko SA, Fogel-Estep ML, Engel MH, Hare PH (1986) Kinetic fractionation of nitrogen isotopes during amino acid transformation. Geochim Cosmochim Acta 50:2143–2146

    CAS  Google Scholar 

  • Macko SA, Fogel-Estep ML, Engel MH, Hare PH (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol 65:79–92

    CAS  Google Scholar 

  • Manetta GI, Benedito-Cecilio E, Martinelli M (2003) Carbon source and trophic position of the main species of fishes of Baía river, Paraná river floodplain, Brazil. Braz J Biol 63:283–290

    CAS  PubMed  Google Scholar 

  • Marques TS, Lara NRF, Bassetti LAB, Piña CI, Camargo PB, Verdade LM (2013) Intraspecific isotopic niche variation in broad-snouted caiman (Caiman latirostris). Isot Environ Health Stud 49(3):325–335

    CAS  Google Scholar 

  • Marquiss M, Newton I, Hobson KA, Kolbeinsson Y (2012) Origins of irruptive migrations by common crossbills Loxia curvirostra into northwestern Europe revealed by stable isotope analysis. Ibis 154:400–409

    Google Scholar 

  • Martinelli LA, Ometto JPHB, Ferraz ES, Victoria RL, Camargo PB, Moreira MZ (2009) Desvendando Questões ambientais com Isótopos estáveis. Oficina de Textos, São Paulo

    Google Scholar 

  • Maruyama A, Yamada Y, Yuma M, Rusuwa B (2001) Stable nitrogen and carbon isotope ratios as migration tracers of a landlocked goby, Rhinogobius sp. (the orange form), in the Lake Biwa water system. Ecol Res 16:697–703

    Google Scholar 

  • McCutchan JH Jr, Lewis WM Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    CAS  Google Scholar 

  • McKechnie AE (2004) Stable isotopes: powerful new tools for animal ecologists. S Afr J Sci 100:131–134

    CAS  Google Scholar 

  • Melo MTQ (2002) Dieta do Caiman latirostris no sul do Brasil. In: Verdade LM, Larriera A (eds.) Conservação e manejo jacarés e crocodilos da América Latina. C.N. Editora, Piracicaba, 116–125

    Google Scholar 

  • Meyer-Rochow VB, Cook I, Hendy CH (1992) How to obtain clues from the otoliths of an adult fish about the aquatic environment it has been in as a larva. Comp Biochem Physiol 103A:333–335

    CAS  Google Scholar 

  • Millspaugh JJ, Marzluff JM (2001) Radio tracking and animal populations. Academic Press, San Diego

    Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relationship between 15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    CAS  Google Scholar 

  • Murray IW, Wolf BO (2012) Carbon incorporation rates and diet-to-tissue discrimination in ectotherms: tortoises are really slow. Physiol Biochem Zool 85:96–105

    CAS  PubMed  Google Scholar 

  • Newsome SD, Clementz MT, Koch PL (2010) Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mammal Sci 26:509–572

    CAS  Google Scholar 

  • Ogden LJE, Hobson KA, Lank DB, Bittman S (2005) Stable isotope analysis reveals that agricultural habitat provides an important dietary component for nonbreeding Dunlin. Avian Conserv Ecol 1:3

    Google Scholar 

  • Olive PJW, Pinnegar JK, Polunin NVC, Richards G, Welch R (2003) Isotope trophic-step fractionation: a dynamic equilibrium model. J Anim Ecol 72:608–617

    Google Scholar 

  • Oliveira ACB (2003) Isótopos estáveis de C e N como indicadores qualitativo e quantitativo da dieta do tambaqui (Colossoma macropomum) da Amazônia Central. Thesis in Sciences of the Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil

    Google Scholar 

  • Oliveira ACB (2006) Seasonality of energy sources of Colossoma macropomum in a floodplain lake in the Amazon—lake Camaleão, Amazonas, Brazil. Fish Manag Ecol 13:135–142

    Google Scholar 

  • Parkington J (1991) Approaches to dietary reconstruction in the Western Cape: are you what you have eaten? J Archaeol Sci 18:331–342

    Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672

    PubMed Central  PubMed  Google Scholar 

  • Parnell AC, Phillips DL, Bearhop S, Semmens BX, Ward EJ, Moore JW, Jackson AL, Grey J, Kelly DJ, Inger R (2013) Bayesian stable isotope mixing models. http://arxiv.org/pdf/1209.6457.pdf. Accessed 20 Sept 2013

  • Pate FD (1997) Bone chemistry and paleodiet: reconstructing prehistoric subsistence-settlement systems in Australia. J Anthropol Archaeol 16:103–120

    Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179

    CAS  PubMed  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269

    PubMed  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    PubMed  Google Scholar 

  • Pritchard PCH, Trebbau P (1984) The turtles of Venezuela. Society for the Study of Amphibians and Reptiles, Athens, Ohio

    Google Scholar 

  • Ramos R, González-Solís J (2012) Trace me if you can: the use of intrinsic biogeochemical markers in marine top predators. Front Ecol Environ 10:258–266

    Google Scholar 

  • Rio CMD, Carleton S (2012) How fast and how faithful: the dynamics of isotopic incorporation into animal tissues. J Mammal 93:353–359

    Google Scholar 

  • Rosenblatt AE, Heithaus MR (2011) Does variation in movement tactics and trophic interactions among American alligators create habitat linkages? J Anim Ecol 80:786–798

    PubMed  Google Scholar 

  • Rosenblatt AE, Heithaus MR (2013) Slow isotope turnover rates and low discrimination values in the American alligator: implications for interpretation of ectotherm stable isotope data. Physiol Biochem Zool 86:137–148

    CAS  PubMed  Google Scholar 

  • Roth JD, Hobson KA (2000) Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: implications for dietary reconstruction. Can J Zool 78:848–852

    Google Scholar 

  • Rubenstein DR, Hobson K (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trend Ecol Evol 19:256–263

    Google Scholar 

  • Seminoff JA, Bjorndal KA, Bolten AB (2007) Stable carbon and nitrogen isotope discrimination and turnover in pond sliders Trachemys scripta: insights for trophic study of freshwater turtles. Copeia 2007:534–542

    Google Scholar 

  • Smith RJ, Hobson KA, Koopman HN, Lavigne DM (1996) Distinguishing between populations of fresh and saltwater harbor seals (Phoca vitulina) using stable-isotope ratios and fatty acid profiles. Can J Fish Aquat Sci 53:272–279

    Google Scholar 

  • Storm-Suke A, Norris DR, Wassenaar LI, Chin E, Nol E (2012) Factors influencing the turnover and net isotopic discrimination of hydrogen isotopes in Proteinaceous tissue: experimental results using Japanese Quail. Physiol Biochem Zool 85:376–384

    CAS  PubMed  Google Scholar 

  • Thomann RV, Connolly JP (1984) Model of PCB in the Lake Michigan lake trout food chain. Environ Sci Technol 18:65–71

    CAS  PubMed  Google Scholar 

  • Thompson DR, Bearhop S, Speakman JR, Furness RW (1998) Feathers as a means of monitoring mercury in seabirds: insights from stable isotope analysis. Environ Pollut 101:193–200

    CAS  PubMed  Google Scholar 

  • Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implication for δ13C analysis of diet. Oecologia 57:32–37

    Google Scholar 

  • Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can J Fish Aquat Sci 54:1142–1158

    Google Scholar 

  • Van Klinken GJ (1999) Bone collagen quality indicators for paleodietary and radiocarbon measurements. J Archaeol Sci 26:687–695

    Google Scholar 

  • Voigt CC, Matt F, Michener R, Kunz TH (2003) Low turnover rates of carbon isotopes in tissues of two nectar-feeding bat species. J Exp Biol 206:1419–1427

    PubMed  Google Scholar 

  • Wassenaar LI (2008) An introduction to light stable isotopes for use in terrestrial animal migration studies. In: Hobson K, Wassenaar LI (eds) Tracking animal migration with stable isotopes. Academic Press, San Diego, pp 21–44

    Google Scholar 

  • Wolf N, Carleton SA, del Rio CM (2009) Ten years of experimental animal isotopic ecology. Funct Ecol 23:17–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago S. Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marques, T.S., Lara, N.R.F., Camargo, P.B., Verdade, L.M., Martinelli, L.A. (2014). The Use of Stable Isotopes Analysis in Wildlife Studies. In: Verdade, L., Lyra-Jorge, M., Piña, C. (eds) Applied Ecology and Human Dimensions in Biological Conservation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54751-5_11

Download citation

Publish with us

Policies and ethics