Skip to main content

Assessment of GPT2 Empirical Troposphere Model and Application Analysis in Precise Point Positioning

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume II

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 304))

Abstract

Precise Point Positioning (PPP) has been demonstrated to be a powerful tool in geodetic applications, such as deformation monitoring. Troposphere delay is an important error source which directly affects positioning accuracy in height direction. At the end of 2012, an improved model named Global Pressure and Temperature 2 (GPT2) was proposed. Compared with early empirical models, this new model mainly eliminates the weakness of limited spatial and temporal variability. In this study, we assess the precision of GPT2 model and apply it in PPP analysis. The analysis data of VMF1, which is produced using European Centre for Medium-Range Weather Forecasts (ECMWF), provides the nearly true value of zenith delays and mapping function for International GNSS Service (IGS) stations. Therefore a globally distributed set of 11 IGS stations is chosen to validate GPT2 model. In the case of using GPT2 as a priori model while the residual zenith delay still estimated with other unknown parameters, it would improve the zenith troposphere delay adjustments to nearly zero-mean. Therefore GPT2 is helpful to improve the efficiency in PPP data processing. However, GPT2 model is only resting upon a global 5° grid and sufficient global troposphere models are not yet available. Due to the complexity of wet zenith delay, PPP height solutions would be unsatisfactory when residual troposphere delay is not parameterized. We conclude that GPT2 is capable of predicting troposphere delay worldwide with an acceptable uncertainty. And GPT2-based PPP solution performs well only in the case of regarding residual model error as an additional unknown parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

  2. Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solutions 5(2):12–28

    Article  Google Scholar 

  3. Hu W, Gao C (2002) GPS measurement principles and applications, 1st edn. China Communications Press, Beijing, pp 96–97

    Google Scholar 

  4. Leick A (1995) GPS satellite surveying, 2nd edn. Wiley, New York 220

    Google Scholar 

  5. Xu G (2007) GPS: theory, algorithms, and applications, 2nd edn. Springer, Berlin

    Google Scholar 

  6. McCarthy DD, Petit G (2004) IERS conventions (2003). In: International earth rotation and reference systems service (IERS), Germany

    Google Scholar 

  7. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Geophys Monogr Ser 15:247–251

    Google Scholar 

  8. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Article  Google Scholar 

  9. Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geodesy 81(10):679–683

    Article  MATH  Google Scholar 

  10. Kouba J (2009) Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. J Geodesy 83(3–4):199–208

    Article  Google Scholar 

  11. Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40:1069–1073

    Article  Google Scholar 

  12. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 111:B02406

    Google Scholar 

  13. Tregoning P, Herring TA (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33:L23303

    Article  Google Scholar 

  14. Penna N, Dodson A, Chen W (2001) Assessment of EGNOS tropospheric correction model. J Navig 54(1):37–55

    Article  Google Scholar 

  15. Mendes VB, Prates G, Pavlis EC, Pavlis DE, Langley RB (2002) Improved mapping functions for atmospheric refraction correction in SLR. Geophys Res Lett 29(10):1414

    Article  Google Scholar 

  16. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B1):3227–3246

    Article  Google Scholar 

  17. Böhm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304

    Google Scholar 

  18. Kouba J (2008) Implementation and testing of the gridded Vienna mapping function 1 (VMF1). J Geodesy 82(4–5):193–205

    Article  Google Scholar 

  19. Urquhart L, Nievinski FG, Santos MC (2013) Assessment of troposphere mapping functions using three-dimensional ray-tracing. GPS Solutions 1–10. doi:10.1007/s10291-013-0334-8

  20. Boehm J, Kouba J, Schuh H (2009) Forecast Vienna mapping functions 1 for real-time analysis of space geodetic observations. J Geodesy 83(5):397–401

    Article  Google Scholar 

  21. Wu JT, Wu SC, Hajj GA (1993) Effects of antenna orientation on GPS carrier phase. Man Geodetica, 18:91–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weirong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, W., Gao, C., Pan, S. (2014). Assessment of GPT2 Empirical Troposphere Model and Application Analysis in Precise Point Positioning. In: Sun, J., Jiao, W., Wu, H., Lu, M. (eds) China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume II. Lecture Notes in Electrical Engineering, vol 304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54743-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54743-0_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54742-3

  • Online ISBN: 978-3-642-54743-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics