Advertisement

Prediction of Polar Motion Based on Combination of Weighted Least-Squares and Autoregressive Moving Average

  • Zhangzhen SunEmail author
  • Tianhe Xu
  • Yijun Mo
  • Chao Xiong
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 304)

Abstract

High accurate prediction of polar motion has important significant and useful value for high-precision space navigation and positioning. In this paper, the weighted least-squares (WLS) is proposed to use to predict different span of polar motion, as the cycles and trends have the characteristic of time-varying in the observational data of polar motion. Autoregressive Moving Average (ARMA) can be applied to fit the residuals of polar motion as it can be regard as a smooth, zero-mean sequence. The LS + AR model, the LS + ARMA model, the WLS + AR model and the WLS + ARMA model are used to predict the different span of polar motion, the results show that, the application of weighted least-squares can improve the polar motion prediction accuracy effectively. And the WLS + ARMA model is equal to WLS + AR model, and in some days WLS + ARMA model is better than WLS + AR model.

Keywords

Polar motion Weighted least-squares Autoregressive moving average Prediction 

Notes

Acknowledgments

This work was supported by Natural Science Foundation of China (41174008) and the State Key Laboratory of Geodesy and Geodynamics Open Funded Projects (SKLGED2013-4-2-EZ) and the Open Foundation of State Key Laboratory of Astronautic and Dynamics (2014ADL-DW0101).

References

  1. 1.
    Zheng DW, Yu NH (1996) Earth rotation and it’s relations to geophysical phenomena: the changes of length of the day. Adv Geophys 11(2):81–101 (In Chinese)Google Scholar
  2. 2.
    Schuh H, Ulrich M, Egger D et al (2002) Prediction of Earth orientation parameters by artificial neural networks. J Geodesy 76:247–258CrossRefGoogle Scholar
  3. 3.
    Akyilmaz O, Kutterer H (2004) Prediction of Earth rotation parameters by fuzzy inference systems. J Geodesy 78:82–93CrossRefGoogle Scholar
  4. 4.
    Schuh H, Nagel S, Seitz T (2001) Linear drift and periodic variations observed in long time series of polar motion. J Geodesy 74:701–710CrossRefGoogle Scholar
  5. 5.
    Kosek W, Kalarus M, Niedzielski T (2008) Forecasting of the Earth orientation parameters—comparison of different algorithms. In: Capitaine N (ed) Proceedings of the journèes 2007, systèmes de référence spatio-temporels “The celestial reference frame for the future”. Observatoire de Paris Systèmes de Référence Temps-Espace UMR8630/CNRS, Paris, pp 155–158Google Scholar
  6. 6.
    Kosek W (2010a) Future improvements in EOP prediction. In: Proceedings of the IAG 2009, “Geodesy for planet earth”, 31 August–4 September, 2009, Buenos Aires, Argentina (accepted)Google Scholar
  7. 7.
    Kosek W (2010b) Causes of prediction errors of pole coordinates data. In: Proceedings of the 6th Orlov’s conference, “The study of the Earth as a planet by methods of geophysics, geodesy and astronomy”, 22–24 June 2009. MAO NAS of Ukraine, Kiev, pp 96–103Google Scholar
  8. 8.
    Kalarus M, Schch H, Kozek W et al (2010) Achievements of Earth orientation parameters prediction comparison campaign. J Geodesy 84:587–596CrossRefGoogle Scholar
  9. 9.
    Kosek W, McCarthy DD, Luzum BJ (1998) Possible improvement of Earth orientation forecast using autocovariance prediction procedures. J Geodesy 72:189–199CrossRefGoogle Scholar
  10. 10.
    Liao D, Wang Q, Zhou Y, Liao X, Huang C (2012) Long-term prediction of the Earth orientation parameters by the artificial neural network technique. J Geodyn, GEOD-1110, 6Google Scholar
  11. 11.
    Schuh H, Ulrich M, Egger D et al (2002) Prediction of Earth orientation parameters by artificial neural networks. J Geodesy 76:247–258CrossRefGoogle Scholar
  12. 12.
    Wang QJ (2007) Studies on the prediction of Earth’s variable rotation by artificial neural networks. Shanghai Astronomical observatory, Chinese Academy of Sciences, Shanghai (In Chinese)Google Scholar
  13. 13.
    Akyilmaz O, Kutterer H (2004) Prediction of Earth rotation parameters by fuzzy inference systems. J Geodesy 78:82–93CrossRefGoogle Scholar
  14. 14.
    Zhang H, Wang QJ, Zhu JJ et al (2011) Joint model of weighted least-squares and AR in prediction of polar motion. Prog Astron 29(3): 343–352 (In Chinese) Google Scholar
  15. 15.
    Sun Z, Xu T (2012) Prediction of Earth rotation parameters based on an improved weighted least-squares and AR model. Geodesy Geodyn 3(3): 57–64 Google Scholar
  16. 16.
    Xu XQ, Zhou YH (2010) High precision prediction method of Earth orientation parameters. J Spacecraft TT&C Technol 29(2): 70–76 (In Chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhangzhen Sun
    • 1
    Email author
  • Tianhe Xu
    • 2
    • 4
    • 5
    • 3
  • Yijun Mo
    • 1
  • Chao Xiong
    • 1
  1. 1.Aerors IncXi’anChina
  2. 2.State Key Laboratory of Geo-information EngineeringXi’anChina
  3. 3.State Key Laboratory of Astronautic and DynamicsXi’anChina
  4. 4.State Key Laboratory of Geodesy and Earth’s DynamicsWuhanChina
  5. 5.Xian Research Institute of Surveying and MappingXi’anChina

Personalised recommendations