Skip to main content

History, Present and Future of Solar Radiation Pressure Theory

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 305))

  • 2396 Accesses

Abstract

It’s a review article about the Solar Radiation Pressure Theory (SRPT). The applications of SRPT in asteroid dynamics, space debris long-term evolution and artificial satellite orbit determination were reviewed. The main SRPT development process and status was introduced from three aspects, which were empirical model, analytical model and semi-empirical model. Several factors, i.e. Second-incident effect, Self-Occlusion effect and Poynting-Robertson effect, were discussed in SRP model building. For SRPT application, the key role of SRP in long-term dynamic evolution of space debris was particularly expatiated on, and the state-of-art was presented. Then we focused on the SRPT application in Beidou Navigation and Positioning System. We demonstrated some existing problems for model building, physical material property perceiving and solution parameters. Finally, we gave the SRPT development prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tea PL Jr (1965) Some thoughts on radiation pressure. Am J Phys 33(1965):190–195

    Google Scholar 

  2. Edwards DK, Bevans JT (1965) Radiation stresses on real surfaces. AIAA J 3(3):522–523

    Article  Google Scholar 

  3. Falken SN, Hsu CT (1965) Specular and lambert reflection problems in radiation dynamics. AIAA J 3(7):1356–1359

    Article  Google Scholar 

  4. Shahrokhi F, Clark HT (1968) Determination of solar radiation forces on satellite materials. AIAA J 6(8):1569–1570

    Article  Google Scholar 

  5. Hartmann WK (1999) Reviewing the Yarkovsky effect: new light on the delivery of stone and iron meteorites from the asteroid belt. Meteorit Planet Sci 34:A161–A167

    Google Scholar 

  6. Rubincam DP (1995) Asteroid orbit evolution due to thermal drag. J Geophys Res 100(E1):1585–1594

    Article  Google Scholar 

  7. O’Keefe JA (1976) Tektites and their origin. Elsevier, Amsterdam

    Google Scholar 

  8. Radzievskii VV (1954) A mechanism for the disintigration of asteroids and meteorites. Dokl Akad Nauk SSSR 97:49–52

    Google Scholar 

  9. Paddack SJ (1969) Rotational bursting of small celestial bodies: effects of radiation pressure. J Geophys Res 74(17):4379–4381

    Article  Google Scholar 

  10. Rubincam DP (2000) Radiative spin-up and spin-down of small asteroids. Icarus 148:2–11

    Article  Google Scholar 

  11. Cuk M, Burns J (2005) Effects of thermal radiation on the dynamics of binary neas. Icarus 176:418–431

    Article  Google Scholar 

  12. Celestino CC, Winter OC, Prado AFBA (2004) Debris perturbed by radiation pressure: relative velocities across circular orbits. Adv Space Res 2004(34):1177–1180

    Article  Google Scholar 

  13. Kocifaj M, Klawka J (2004) Dynamical behaviour of interstellar dust particles in the solar system. J Quant Spectrosc Radiat Transfer 2004(89):165–177

    Article  Google Scholar 

  14. Dow J, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of Global Navigation Satellite Systems. J Geodesy 3–4:191–198

    Article  Google Scholar 

  15. Vokrouhlichy D, Farinella P, Mignard F (1993) Solar radiation pressure perturbations for earth satellites I: a complete theory including penumbra transitions. Astron Astrophys 280:295–312

    Google Scholar 

  16. Pande KC (1976) Attitude control of spinning spacecraft by radiation pressure. J Spacecraft 13(12):765–768

    Article  Google Scholar 

  17. Janssens F (2010) Automatic sun tracking with solar radiation pressure in interplanetary missions. Toronto, Ontario, Canada

    Google Scholar 

  18. Li H, Williams T (2006) Reconfiguration of Sun–Earth libration point formations using solar radiation pressure. J Spacecraft Rockets 43(6):1328–1339

    Article  Google Scholar 

  19. Shahid K, Kumar KD (2010) Formation control at the Sun–Earth L2 libration point using solar radiation pressure. J Spacecraft Rockets 47(4):614–615

    Article  Google Scholar 

  20. Varma S, Kumar KD (2010) Multiple satellite formation flying using differential solar radiation pressure. Toronto, Ontario, Canada

    Google Scholar 

  21. Likhachev VN, Sazonov VV, Ul’Yashin AI (2004) Evolution of the orbit of an Earth satellite with a solar sail. Cosm Res 42(1):79–83

    Article  Google Scholar 

  22. Borja JA, Tun D (2006) Deorbit process using solar radiation force. J Spacecraft Rockets 43(3):685–687

    Article  Google Scholar 

  23. Yamaguchi T, Mimasu Y, Tsuda Y et al (2012) Hybrid estimation of solar radiation pressure for a sail spacecraft. J Spacecraft Rockets, AIAA Early Edition, 1–4

    Google Scholar 

  24. Kezerashvili RY, Zquez-Poritz JFV (2013) Effect of a drag force due to absorption of solar radiation on solar sail orbital dynamics. Acta Astronaut 2013(84):206–214

    Article  Google Scholar 

  25. Mcmahon JW (2011) An analytical theory for the perturbative effect of solar radiation pressure on natural and artificial satellites. University of Colorado

    Google Scholar 

  26. Colombo OL (1989) The dynamics of global positioning orbits and the determination of precise ephemerides. J Geophys Res Atmos 94(B7):9167–9182

    Article  Google Scholar 

  27. Beutler G, Jäggi A, Hugentobler U (2006) Efficient satellite orbit modelling using pseudo-stochastic parameters. J Geodesy 80(7):353–372

    Article  Google Scholar 

  28. Fliegel H, Gallini T, Swift E (1992) Global positioning system radiation force model for geodetic applications. J Geophys Res Atmos 97(B1):559–568

    Article  Google Scholar 

  29. Fliegel H, Gallini T (1996) Solar force modeling of block IIR Global Positioning System Satellites. J Spacecraft Rockets 33(6):863–866

    Article  Google Scholar 

  30. Spring TA (1999) Modeling and validating orbits and clocks using the global positioning system. University of Berne, Berne

    Google Scholar 

  31. Lucchesi D (2001) Reassessment of the error modelling of non-gravitational perturbations on lageos ii and their impact in the lense-thirring determination. part I. Planet Space Sci 49:447–463

    Article  Google Scholar 

  32. Scheeres DJ (1999) Satellite dynamics about small bodies: averaged solar radiation pressure effects. J Astronaut Sci 47(1):25–46

    MathSciNet  Google Scholar 

  33. Marshall JA, Luthcke SB (1994) Modeling radiation forces acting on Topex/Poseiden for precision orbit determination. J Spacecraft Rockets 31(1):99–105

    Article  Google Scholar 

  34. Cheng M, Ries J, Tapley B (2008) Assessment of the solar radiation model for grace orbit determination. Adv Astronaut Sci 129:501–510

    Google Scholar 

  35. Rim H (2006) Radiation pressure modeling for icesat precision orbit determination. Keystone, Co

    Google Scholar 

  36. Ziebart M (2004) Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J Spacecraft Rockets 41(5):840–848

    Article  Google Scholar 

  37. Bar-Sever Y, Kuang D (2004) New empirically derived solar radiation pressure model for GPS satellites. Interplanetary Network Progress Report, pp 42–159

    Google Scholar 

  38. Sibthorpe A, Bertiger W, Desai SD (2011) An evaluation of solar radiation pressure strategies for the GPS constellation. J Geodesy 85(8):505–517

    Article  Google Scholar 

  39. Rodriguez-Solano CJ, Hugentobler U, Steigenberger P (2012) Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv Space Res 2012(49):1113–1128

    Article  Google Scholar 

  40. Springer T, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS. Adv Space Res 23(4):673–676

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Junshou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Junshou, C., Wei, T., Chao, L., Guang, Z., Jie, Y. (2014). History, Present and Future of Solar Radiation Pressure Theory. In: Sun, J., Jiao, W., Wu, H., Lu, M. (eds) China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III. Lecture Notes in Electrical Engineering, vol 305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54740-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54740-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54739-3

  • Online ISBN: 978-3-642-54740-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics