Skip to main content

Application of Improved LLL Lattice Reduction in BDS Ambiguity Decorrelation

  • Conference paper
  • First Online:
  • 2331 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 305))

Abstract

In the process of BDS navigation and positioning, fast and precise ambiguity resolution plays a key role in improving the efficiency and precision of positioning. In cases of highly correlated ambiguities, since the searching space is too large, it takes a long time to fix the ambiguities. Therefore, it is very necessary to deccorelate the covariance matrix. In essence, the decorrelation process is the closest vector problem in Lattice Theory. On the basis of proving the equality of lattice reduction and decorrelation, the LLL decorrelation algorithm is analyzed and it is improved on the basis of QR decomposition. BDS triple-frequency data is adopted to carry the experiment. The decorrelation effect of the LLL and the improved LLL algorithm are analyzed from aspects of spectral condition number, average correlation coefficient and reduction time. It is proved that the improved LLL algorithm has better decorrelation effect although it requires longer reduction time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hatch RS (1990) Instantaneous ambiguity resolution. Kinematic systems in geodesy, surveying, and remote sensing. Springer, Tokyo, p 299–380

    Google Scholar 

  2. Frei E (1990) Rapid static positioning based on the fast ambiguity resolution approach FARA: theoty and first results. Manuscripta Geodaet 15(6):326–356

    Google Scholar 

  3. Teunissen PJG. (1993) Least-squares estimation of the integer GPS ambiguities. In: Proceedings of international association of geodesy general meeting, Beijing, China, Aug 1993

    Google Scholar 

  4. Liu LT, Hsu HT, Zhu YZ et al (1999) A new approach to GPS ambiguity decorrelation. J Geodesy 73(10):478–490

    Article  MATH  Google Scholar 

  5. Xu P (2001) Random simulation and GPS decorrelation. J Geodesy 75(7):408–423

    Article  MATH  Google Scholar 

  6. Lagrange JL (1773) Recherches D’arithmetique. Nouveaux memories de l’Academie de Berlin. p 265–312

    Google Scholar 

  7. Fan L (2013) Research on method of integer ambiguity estimation with lattice theory. Information Engineering University, Zhengzhou

    Google Scholar 

  8. Hermite C (1850) Extraits de lettres de M. Hermite à M. Jacobisur differents objets de la théorie des nombres, deuxième letter. Reine Angew Math 40:279–290

    Article  Google Scholar 

  9. Minkowski H (1896) Geometrie der zahlen. Springer, Stuttgart

    Google Scholar 

  10. Lenstra AK, Lenstra HW, Lovasz L (1982) Factoring polynomials with rational coefficients. Mathematische Annalen 261(4):515–534

    Google Scholar 

  11. Hassibi A, Boyed S (1998) Integer parameter estimation in linear models with applications to GPS. IEEE Trans Sign Proces 46(11):2938–2952

    Article  Google Scholar 

  12. Grafarend EW (2000) Mixed integer-real valued adjustment (IRA) problems: GPS initial cycle ambiguity resolution by means of the LLL algorithm. GPS Solutions 4(2):31–44

    Article  Google Scholar 

  13. Liu J, Yu X, Zhang X (2012) GNSS ambiguity resolution using the lattice theory. Acta Geodaet Cartogr Sin 41(5):636–645

    MathSciNet  Google Scholar 

  14. Chang XW, Zhou T (2007) Miles: matlab package for solving mixed integer least squares problems. GPS Solutions 11(4):289–294

    Article  MathSciNet  Google Scholar 

  15. Gloub GH, van Loan CF (1993) Matrix computation. The Johns Hopkins University Press, Baltimore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, K., Chai, H., Pan, Z., Wang, H., Dong, B., Ming, L. (2014). Application of Improved LLL Lattice Reduction in BDS Ambiguity Decorrelation. In: Sun, J., Jiao, W., Wu, H., Lu, M. (eds) China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III. Lecture Notes in Electrical Engineering, vol 305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54740-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54740-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54739-3

  • Online ISBN: 978-3-642-54740-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics