Skip to main content

An Analysis of the Temporal and Spatial Variations of the Global Tropopause with COSMIC Radio Occultation Bending Angles

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume I

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 303))

Abstract

As the transition layer between the troposphere and the stratosphere, the structure of the tropopause is closely related to the weather and climate of the near-surface layer. The variation of the tropopause parameters including the height, the temperature and the pressure of the tropopause are sensitive indicators of climate variability and global change. Characterized by the advantages of high vertical resolution, low-cost, global coverage, and all-weather capability, the Global Positioning System (GPS) radio occultation (RO) technology provides rich observation data for the study of the global tropopause structure. The precise identification of the tropopause height is the prerequisite for the accurate determination of the tropopause temperature and pressure. The tropopause height identified from GPS RO temperature profile will be affected by the errors brought out by the assumptions and the prior atmosphere background applied in the inversion process of the temperature profile. To determine the tropopause height directly from RO bending angle profile is an effective way to avoid such errors. In this paper, the natural logarithm objective covariance transform method is used to identify the tropopause height from GPS RO bending angle profiles. With the GPS RO data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission, the spatial and temporal variations of the global tropopause parameters included height, temperature and pressure are analyzed. It is found that the latitudinal distribution characteristics of the tropopause parameters are distinct and the seasonal variation trends of the tropopause structure are significant. It is also found that the temporal and spatial distributions of the tropopause parameters are asymmetric over the northern and the southern hemispheres.

This study was supported by National Natural Science Foundation of China (Grant No. 41374036, 41074024, 40904002, 41204030) and National 973 Project China (Grant No. 2013CB733301).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehta SK, Ratnam MV, Murthy BVK (2010) Variability of the tropical tropopause over Indian monsoon region. J Geophys Res 115:D14120. doi:10.1029/2009JD012655

    Article  Google Scholar 

  2. Awange JL, Wickert J, Schmidt T, Sharifi MA, Heck B, Fleming K (2011) GNSS remote sensing of the Australian tropopause. Clim Change 105:597–618

    Google Scholar 

  3. Schmidt T, Wickert J, Beyerle G (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophys Res Lett 35(L11806). doi:10.1029/2008GL 034012

  4. Schmidt T, Wickert J, Haser A (2010) Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures. Adv Space Res 46:150–161

    Article  Google Scholar 

  5. Santer BD, Wigley TM, Simmons AJ (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109:D21104. doi:10.1029/2004JD005075

    Article  Google Scholar 

  6. Shepherd TG (2002) Issues in stratosphere-troposphere coupling. J Meteorol Soc Jpn 4B:769–792

    Article  Google Scholar 

  7. Santer, BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Bru¨ggemann W (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483. doi:10.1126/science.1084123,2003

    Google Scholar 

  8. Sausen R, Santer BD (2003) Use of changes in tropopause height to detect human influences on climate. Meteorol Z 12:131–136. doi:10.1127/0941-2948/2003/0012-0131.2003

    Google Scholar 

  9. Son SW, Polvani LMD, Waugh W, Birner T, Akiyoshi H, Garcia RR, Gettelman A, Plummer DA, Rozanov E (2009) The impact of stratospheric ozone recovery on tropopause height trends. J Clim 22:429–445. doi:10.1175/2008JCLI2215.1.2009

    Article  Google Scholar 

  10. Seidel DJ, Rebecca JR, Angell JK (2001) Climatological characteristics of the tropical tropopause as revealed by radiosondes. J Geophys Res 106:7857–7887

    Article  Google Scholar 

  11. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111

    Google Scholar 

  12. Borsche M, Kirchengast G, Foelsche U (2007) Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses. Geophys Res Lett 34:L03702. doi:10.1029/2006GL027918

    Article  Google Scholar 

  13. Randel WJ, Wu F, Gaffen DJ (2000) Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J Geophys Res 105(D12):15509–15523

    Article  Google Scholar 

  14. Randel WJ, Wu F, Rios WR (2003) Thermal variability of the tropical tropopause region derived from GPS/MET observations. J Geophys Res 108(D1). doi: 10.1029/2002JD002595,2003

  15. Xu X, Luo J, Zhang K (2011) An analysis of the structure and variation of the tropopause over China with GPS radio occultation. J Navig 64:103–111

    Article  Google Scholar 

  16. Lewis HW (2009) A robust method for tropopause altitude identification using GPS radio occultation data. Geophys Res Lett 36:L12808. doi:10.1029/2009GL039231

    Article  Google Scholar 

  17. Rao DN, Ratnam MV, Murthy BVK (2007) Identification of tropopause using bending angle profile from GPS radio occultation (RO) a radio tropopause. Geophys Res Lett 34:L15809. doi:10.1029/2007GL029709

    Article  Google Scholar 

  18. Nishida M, Shimizu A, Tsuda T (2000) Seasonal and longitudinal variations in the tropical tropopause observed with the GPS occultation technique (GPS/MET). J Meteorol Soc Jpn 78(6):691–700

    Google Scholar 

  19. Fueglistaler S, Dessler AE, Dunkerton TJ, Folkins I, Fu Q, Mote PW (2009) Tropical tropopause layer, Rev Geophys 47(RG1004):31

    Google Scholar 

  20. Añel JA, Antuña JC, Torre L, Castanheir JM, Gimeno L (2008) Climatological features of global multiple tropopause events. J Geophys Res 113(D00B08) doi:10.1029/2007JD009697

  21. Randel WJ, Seide DJl, Pan LL (2007) Observational characteristics of double tropopauses. J Geophys Res 112(D07309). doi:10.1029/2006JD007904,Apr.,2007

  22. Schmidt T, Wickert J, Beyerle G (2004) Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. J Geophys Res 109(D13105). doi:10.1029/2004JD004566

  23. Hoinka K (1998) Statistics of the global tropopause pressure, Mon. Weather Rev. 3303–3325

    Google Scholar 

  24. Han T, Ping J, Zhang S (2011) Global features and trends of the tropopause derived from GPS/CHAMP RO data. Sci China Phys, Mech Astron 54(2):365–374. doi: 10.1007/s11433-010-4217-5

  25. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York, pp 520

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge UCAR (USA) and NSPO (Taiwan) for the free COSMIC data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, P., Xu, X., Guo, J. (2014). An Analysis of the Temporal and Spatial Variations of the Global Tropopause with COSMIC Radio Occultation Bending Angles. In: Sun, J., Jiao, W., Wu, H., Lu, M. (eds) China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume I. Lecture Notes in Electrical Engineering, vol 303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54737-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54737-9_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54736-2

  • Online ISBN: 978-3-642-54737-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics