Optimal Operation Planning of Wind-Hydro Power Systems Using a MILP Approach

  • Paulo Cruz
  • Hugo M. I. Pousinho
  • Rui Melício
  • Victor M. F. Mendes
  • Manuel Collares-Pereira
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 423)


This paper addresses an approach for a day-ahead operation of a wind-hydro power system in an electricity market. A wind-hydro system is able to mitigate the intermittence and the variations on wind power, mitigating the economic penalty due to unbalance in the satisfaction of the compromises. The approach consists in a model given by a mixed-integer linear programming. This model maximizes the profit in the day-ahead market, taking into consideration the operating constraints of both the wind the farm and the pumping-hydro system. Finally, numerical case studies illustrate the interest and effectiveness of the proposed approach.


Collective awareness day-ahead market wind-hydro power system optimal operation 


  1. 1.
    Al-Awami, A., El-Sharkawi, M.A.: Coordinated Trading of Wind and Thermal Energy. IEEE Trans. Power Syst. 2(3), 277–287 (2011)Google Scholar
  2. 2.
    Castronuovo, E.D., Peças Lopes, J.A.: On the Optimization of the Daily Operation of a Wind-Hydro Power Plant. IEEE Trans. Power Syst. 19(3), 1599–1606 (2004)CrossRefGoogle Scholar
  3. 3.
    Angarita, J.L., Usaola, J., Martínez-Crespo, J.: Combined Hydro-Wind Generation Bids in a Pool-Based Electricity Market. Electr. Power Syst. Res. 79, 1038–1046 (2009)CrossRefGoogle Scholar
  4. 4.
    Chen, C.L.: Optimal Wind-Thermal Generating Unit Commitment. IEEE Trans. Power Syst. 23(1), 273–279 (2008)CrossRefGoogle Scholar
  5. 5.
    Maddaloni, J.D., Rowe, A.M., Van Kooten, G.C.: Network Constrained Wind Integration on Vancouver Island. Energy Policy 36(2), 591–602 (2008)CrossRefGoogle Scholar
  6. 6.
    Collective Awareness Platforms for Sustainability and Social Innovation, (accessed October 2013)
  7. 7.
    Lund, H.: Large Scale Integration of Wind Power into Different Energy Systems. Energy 30(13), 2402–2412 (2005)CrossRefGoogle Scholar
  8. 8.
    Zalani, M.D., Mohamed, A., Hannan, M.A.: An Improved Control Method of Battery Energy Storage System for Hourly Dispatch of Photovoltaic Power Sources. Energy Convers. Manag. 73, 256–270 (2013)CrossRefGoogle Scholar
  9. 9.
    Sebastián, R., Alzola, R.P.: Flywheel Energy Storage Systems: Review and Simulation for an Isolated Wind Power System. Renew. Sust. Energy Rev. 16(9), 6803–6813 (2012)CrossRefGoogle Scholar
  10. 10.
    Karamanou, S.E., Papathanassiou, S., Papadopoulos, M.: Operating Policies for Wind-Pumped Storage Hybrid Power Stations in Island Grids. IET Renew. Power Gener. 3(3), 293–307 (2009)CrossRefGoogle Scholar
  11. 11.
    Angarita, J.M., Usaola, J.G.: Combining Hydro-Generation and Wind Energy: Biddings and Operation on Electricity Spot Markets. Electr. Power Syst. Res. 77(5-6), 393–400 (2007)CrossRefGoogle Scholar
  12. 12.
    Bakos, G.C.: Feasibility Study of a Hybrid Wind/Hydro Power-System for Low-Cost Electricity Production. Appl. Energy 72(3), 599–608 (2002)CrossRefGoogle Scholar
  13. 13.
    Bueno, C., Carta, J.A.: Wind Powered Pumped Hydro Storage Systems, a means of Increasing the Penetration of Renewable Energy in the Canary Islands. Renew. Sustain. Energy Rev. 10(4), 312–340 (2006)CrossRefGoogle Scholar
  14. 14.
    Anagnostopoulos, J., Papantoni, S.D.: Pumping Station Design for a Pumped-Storage Wind–Hydro Power Plant. Energy Convers. Manage. 48(11), 3009–3017 (2007)CrossRefGoogle Scholar
  15. 15.
    Anagnostopoulos, J., Papantoni, S.D.: Simulation and Size Optimization of a Pumped-Storage Power Plant for the Recovery of Wind-Farms Rejected Energy. Renew. Energy 33(7), 1685–1694 (2008)CrossRefGoogle Scholar
  16. 16.
    Korpaasa, M., Holen, A.T., Hildrumb, R.: Operation and Sizing of Energy Storage for Wind Power Plants. Elect. Power Energy Syst. 25, 599–606 (2003)CrossRefGoogle Scholar
  17. 17.
    García-González, J., Ruiz de la Muela, R., Santos, L.M., González, A.: Stochastic Joint Optimization of Wind Generation and Pumped-Storage Units in an Electricity Market. IEEE Trans. Power Syst. 23(2), 460–468 (2008)CrossRefGoogle Scholar
  18. 18.
    Bradwell, D.J., Kim, H., Sirk, A.H.C., Sadoway, D.R.: Magnesium-Antimony Liquid Metal Battery for Stationary Energy Storage. J. Am. Chem. Soc. 134, 1895–1897 (2012)CrossRefGoogle Scholar
  19. 19.
    Red Eléctrica de España, S. A. Sistema de Información del Operador del Sistema, (accessed October 2013)

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Paulo Cruz
    • 1
  • Hugo M. I. Pousinho
    • 1
    • 2
  • Rui Melício
    • 1
    • 2
  • Victor M. F. Mendes
    • 1
    • 3
  • Manuel Collares-Pereira
    • 1
  1. 1.University of ÉvoraÉvoraPortugal
  2. 2.IDMEC/LAETA, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  3. 3.Instituto Superior of Engenharia de LisboaLisbonPortugal

Personalised recommendations