The ProFlex Methodology: Agile Manufacturing in Practice
Conference paper
Abstract
Today, manufacturing production systems are required to be responsive, re-configurable, adaptable, and flexible. The fulfilment of these requirements is directly related to the method used to design and develop their control applications. The paper presents the result of an investigation study to capture current techniques adopted by logic designers during the design and development of control applications at IntRoSys. The result of this study is then used as the foundation for the development of a methodology and its related tools for achieving agility in programming manufacturing control systems.
Keywords
Automation Automotive Industry Industrial Standards Controllers IEC-61131-3 Behavioural Modelling Code Generation Download
to read the full conference paper text
References
- 1.Jovane, F., Westkämper, E., Williams, D.J.: The ManuFuture Road: Towards Competitive and Sustainable High-adding-value Manufacturing. Springer (2009)Google Scholar
- 2.Rosiná, F., Temperini, S.: Advanced Maintenance Strategies for a Sustainable Manufacturing. In: 10th IFAC Workshop on Intelligent Manufacturing Systems, Lisbon (2010)Google Scholar
- 3.Hajarnavis, V., Young, K.: An Assessment of PLC Software Structure Suitability for the Support of Flexible Manufacturing Processes. IEEE Trans. on Autom. Sci. Eng. 5(4), 641–650 (2008)CrossRefGoogle Scholar
- 4.Michalos, G., Makris, S., Papakostas, N., Mourtzis, D., Chryssolouris, G.: Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach. CIRP J. Manuf. Sci. Technol. 2(2), 81–91 (2010)CrossRefGoogle Scholar
- 5.Wagner, T.: Applying Agents for Engineering of Industrial Automation Systems, pp. 1097–1097. Springer (2003)Google Scholar
- 6.Barata, J.: Coalition Based Approach For ShopFloor Agility. Orion, Amadora (2005)Google Scholar
- 7.Hajarnavis, V., Young, K.: An investigation into programmable logic controller software design techniques in the automotive industry. Assem. Autom. 28(1), 43–54 (2008)CrossRefGoogle Scholar
- 8.Otto, A., Hellmann, K.: IEC 61131: A general overview and emerging trends. IEEE Ind. Electron. Mag. 3(4), 27–31 (2009)CrossRefGoogle Scholar
- 9.Lucas, M.R.: Understanding and assessing logic control design methodologies. University of Michigan (2003)Google Scholar
- 10.Pietrusewicz, K., Urbanski, L.: Control system software programming. Control Eng. 59, 32–37 (2012)Google Scholar
- 11.Walter, T.: Ladder logic: Strengths, weaknesses. Control Eng. (March 2007)Google Scholar
- 12.Lucas, M.R., Tilbury, D.M.: The practice of industrial logic design. In: Proceedings of the American Control Conference, vol. 2, pp. 1350–1355 (2004)Google Scholar
- 13.Di Orio, G., Barata, J., Sousa, C., Flores, L.: Control System Software Design Methodology for Automotive Industry. Presented at the IEEE International Conference on Systems, Man, and Cybernetics - IEEE SMC 2013, Manchester, UK (2013)Google Scholar
Copyright information
© IFIP International Federation for Information Processing 2014