The ProFlex Methodology: Agile Manufacturing in Practice

  • Giovanni Di Orio
  • José Barata
  • Carlos Sousa
  • Luís Flores
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 423)


Today, manufacturing production systems are required to be responsive, re-configurable, adaptable, and flexible. The fulfilment of these requirements is directly related to the method used to design and develop their control applications. The paper presents the result of an investigation study to capture current techniques adopted by logic designers during the design and development of control applications at IntRoSys. The result of this study is then used as the foundation for the development of a methodology and its related tools for achieving agility in programming manufacturing control systems.


Automation Automotive Industry Industrial Standards Controllers IEC-61131-3 Behavioural Modelling Code Generation 


  1. 1.
    Jovane, F., Westkämper, E., Williams, D.J.: The ManuFuture Road: Towards Competitive and Sustainable High-adding-value Manufacturing. Springer (2009)Google Scholar
  2. 2.
    Rosiná, F., Temperini, S.: Advanced Maintenance Strategies for a Sustainable Manufacturing. In: 10th IFAC Workshop on Intelligent Manufacturing Systems, Lisbon (2010)Google Scholar
  3. 3.
    Hajarnavis, V., Young, K.: An Assessment of PLC Software Structure Suitability for the Support of Flexible Manufacturing Processes. IEEE Trans. on Autom. Sci. Eng. 5(4), 641–650 (2008)CrossRefGoogle Scholar
  4. 4.
    Michalos, G., Makris, S., Papakostas, N., Mourtzis, D., Chryssolouris, G.: Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach. CIRP J. Manuf. Sci. Technol. 2(2), 81–91 (2010)CrossRefGoogle Scholar
  5. 5.
    Wagner, T.: Applying Agents for Engineering of Industrial Automation Systems, pp. 1097–1097. Springer (2003)Google Scholar
  6. 6.
    Barata, J.: Coalition Based Approach For ShopFloor Agility. Orion, Amadora (2005)Google Scholar
  7. 7.
    Hajarnavis, V., Young, K.: An investigation into programmable logic controller software design techniques in the automotive industry. Assem. Autom. 28(1), 43–54 (2008)CrossRefGoogle Scholar
  8. 8.
    Otto, A., Hellmann, K.: IEC 61131: A general overview and emerging trends. IEEE Ind. Electron. Mag. 3(4), 27–31 (2009)CrossRefGoogle Scholar
  9. 9.
    Lucas, M.R.: Understanding and assessing logic control design methodologies. University of Michigan (2003)Google Scholar
  10. 10.
    Pietrusewicz, K., Urbanski, L.: Control system software programming. Control Eng. 59, 32–37 (2012)Google Scholar
  11. 11.
    Walter, T.: Ladder logic: Strengths, weaknesses. Control Eng. (March 2007)Google Scholar
  12. 12.
    Lucas, M.R., Tilbury, D.M.: The practice of industrial logic design. In: Proceedings of the American Control Conference, vol. 2, pp. 1350–1355 (2004)Google Scholar
  13. 13.
    Di Orio, G., Barata, J., Sousa, C., Flores, L.: Control System Software Design Methodology for Automotive Industry. Presented at the IEEE International Conference on Systems, Man, and Cybernetics - IEEE SMC 2013, Manchester, UK (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Giovanni Di Orio
    • 1
  • José Barata
    • 1
  • Carlos Sousa
    • 2
  • Luís Flores
    • 2
  1. 1.CTS – UNINOVA, Dep. de Eng. Electrotécnica, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.IntRoSys, SA – Global Control System DesignersMoitaPortugal

Personalised recommendations