Skip to main content

Exploring New Mechanisms for High Power Millimeter-Wave Gyrotron Amplifiers

  • Chapter
  • First Online:
Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers

Abstract

A complex gyrotron amplifier, namely, gyrotron-cascaded pre-bunching amplifier (gyro-CPA), is proposed in this chapter. The amplifier employs three interesting schemes, which are called electron cyclotron maser (ECM)-cascaded amplifier, high-order mode drift tube, and bi-mode operation. These topics are intended for providing solutions to the challenges related to lossy material error control, suppressing instability competitions, and high-power capability in engineering developing a gyrotron amplifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu KR (2004) The electron cyclotron maser. Rev Mod Phys 76:489–540

    Article  Google Scholar 

  2. Chu KR (2002) Overview of research on the gyrotron traveling-wave amplifier. IEEE Trans Plasma Sci 30:903–908

    Article  Google Scholar 

  3. Thumm M (2013) State-of-the-art of high power gyro-devices and free electron masers, Update 2012. KIT Scientific Report 7641, KIT Scientific Publishing

    Google Scholar 

  4. Park GS, Choi JJ, Park SY et al (1995) Gain broadening of 2-stage tapered gyrotron traveling-wave tube amplifier. Phys Rev Lett 74:2399–2402

    Article  Google Scholar 

  5. Barnett LR, Lau YY, Chu KR et al (1981) An experimental wideband gyrotron traveling-wave amplifier. IEEE Trans Electron Devices 28:872–875

    Article  Google Scholar 

  6. Chu KR, Chen HY, Hung CL et al (1998) Ultrahigh gain gyrotron traveling wave amplifier. Phys Rev Lett 81:4760–4763

    Article  Google Scholar 

  7. Chu KR, Chen HY, Hung CL et al (1999) Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE Trans Plasma Sci 27:391–404

    Article  Google Scholar 

  8. Wang QS, McDermott DB, Luhmann NC (1996) Operation of a Stable 200-kW second-harmonic gyro-TWT amplifier. IEEE Trans Plasma Sci 24:700–706

    Article  Google Scholar 

  9. Chong CK, McDermott DB, Luhmann NC (1998) Large-signal operation of a third-harmonic slotted gyro-TWT amplifier. IEEE Trans Plasma Sci 26:500–507

    Article  Google Scholar 

  10. Pershing DE, Nguyen KT, Calame JP et al (2004) A TE11 K-a-band gyro-TWT amplifier with high-average power compatible distributed loss. IEEE Trans Plasma Sci 32:947–956

    Article  Google Scholar 

  11. Nguyen KT, Calame JP, Pershing DE et al (2001) Design of a Ka-band gyro-TWT for radar applications. IEEE Trans Electron Devices 48:108–115

    Article  Google Scholar 

  12. Liu BT, Feng JJ, Wang EF, Li ZL, Zeng X, Qian LJ, Wang H (2011) Design and experimental study of a Ka-band gyro-TWT with periodic dielectric loaded circuit. IEEE Trans Plasma Sci 39(8):1665–1672

    Article  Google Scholar 

  13. Wang E, Zeng X, Liu BT, Qian LJ, Li ZL, Feng JJ, Zhu SQ (2012) Experimental study of high power gyrotron traveling wave tube with periodic lossy material loading. IEEE Trans Plasma Sci 40(7):1846–1853

    Article  Google Scholar 

  14. Yan R, Luo Y, Liu G, Pu YL (2012) Design and experiment of a Q-band gyro-TWT loaded with lossy dielectric. IEEE Trans Electron Devices 59(12):3612–3617

    Article  Google Scholar 

  15. Sirigiri JR, Shapiro MA, Temkin RJ (2003) High-power 140-GHz quasioptical gyrotron traveling-wave amplifier. Phys Rev Lett 90:258302

    Article  Google Scholar 

  16. Sirigiri JR, Kreischer KE, Machuzak J et al (2001) Photonic-band-gap resonator gyrotron. Phys Rev Lett 86:5628–5631

    Article  Google Scholar 

  17. Denisov GG, Bratman VL, Phelps ADR et al (1998) Gyro-TWT with a helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth. IEEE Trans Plasma Sci 26:508–518

    Article  Google Scholar 

  18. Burt G, Samsonov SV, Ronald K et al (2004) Dispersion of helically corrugated waveguides: analytical, numerical, and experimental study. Phys Rev E 70:046402

    Article  Google Scholar 

  19. Bratman VL, Cross AW, Denisov GG et al (2000) High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide. Phys Rev Lett 84:2746–2749

    Article  Google Scholar 

  20. Denisov GG, Bratman VL, Cross AW et al (1998) Gyrotron traveling wave amplifier with a helical interaction waveguide. Phys Rev Lett 81:5680–5683

    Article  Google Scholar 

  21. Cross AW, He W, Phelps ADR et al (2007) Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun. Appl Phys Lett 90:253501

    Article  Google Scholar 

  22. Blank M, Danly BG, Levush B (1999) Experimental demonstration of a W-band (94 GHz) gyrotwystron amplifier. IEEE Trans Plasma Sci 27(2):405–411

    Article  Google Scholar 

  23. Baik CW, Jeon SG, Kim DH, Sato N, Yokoo K, Park GS (2005) Third-harmonic frequency multiplication of a two-stage tapered gyrotron TWT amplifier. IEEE Trans Electron Devices 52(5):829–838

    Article  Google Scholar 

  24. Lau YY, Chu KR, Barnett LR et al (1981) Gyrotron traveling wave amplifier.1. Analysis of oscillations. Int J Infrared Millim Waves 2:373–393

    Article  Google Scholar 

  25. Du CH, Liu PK (2009) A lossy dielectric-ring loaded waveguide with suppressed periodicity for gyro-TWTs applications. IEEE Trans Electron Devices 56:2335–2342

    Article  MathSciNet  Google Scholar 

  26. Du CH, Xue QZ, Liu PK et al (2009) Modal transition and reduction in a lossy dielectric-coated waveguide for gyrotron-traveling-wave tube amplifier applications. IEEE Trans Electron Devices 56:839–845

    Article  Google Scholar 

  27. Du CH, Xue QZ, Liu PK (2008) Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications. IEEE Electron Device Lett 29:1256–1258

    Article  Google Scholar 

  28. Garven M, Calame JP, Danly BG et al (2002) A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region. IEEE Trans Plasma Sci 30:885–893

    Article  Google Scholar 

  29. Tsai WC, Chang TH, Chen NC et al (2004) Absolute instabilities in a high-order-mode gyrotron traveling-wave amplifier. Phys Rev E 70:056402

    Article  Google Scholar 

  30. Chen SH, Chang TH, Pao KF et al (2002) Linear and time-dependent behavior of the gyrotron backward-wave oscillator. Phys Rev Lett 89:268303

    Article  Google Scholar 

  31. Fliflet AW, Lee RC, Read ME (1988) Self-consistent field model for the complex cavity gyrotron. Int J Electron 65(3):273–283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Du, CH., Liu, PK. (2014). Exploring New Mechanisms for High Power Millimeter-Wave Gyrotron Amplifiers. In: Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54728-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54728-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54727-0

  • Online ISBN: 978-3-642-54728-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics