Skip to main content

Review of Gyrotron Traveling-Wave Tube Amplifiers

  • Chapter
  • First Online:
  • 1142 Accesses

Abstract

The review starts with a simple introduction to the microwave electronics, and then it addresses the well-known concept of the relativistic electron cyclotron maser (ECM) and the operation principles of the gyrotron devices. The technical review of the gyrotron traveling-wave tube (gyro-TWT) amplifiers focuses on the electron beam-wave interaction schemes and a series of key techniques, including controlling instability competitions by waveguide wall loss, high-power operation based on a higher-order mode, low magnetic field operation on a higher cyclotron harmonic, and broadband operation by employing dispersion shaping. It is revealed that most of the problems in developing a high-power gyro-TWT amplifier are closely related to the instability competitions. Finally, it concludes that overcoming the challenging problem of instability competition in the interaction circuit is the key to promote the development of the high-power gyro-TWT amplifiers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gilmour AS (2011) Principles of klystrons, traveling wave tubes, magnetrons, cross-field amplifiers, and gyrotrons. Artech House, Incorporated, ISBN-13918-1-60807-184-5, 685 Canton Street, Norwood, UA02062

    Google Scholar 

  2. Liu SG, Li HF, Wang WX (1985) Introduction to microwave electronics. National Defence Industry Press, Beijing (In Chinese)

    Google Scholar 

  3. Zhang KQ, Li DJ (2001) Electromagnetic theory for microwave and optoelectronics. Publishing House of Electronics Industry, Beijing (In Chinese)

    Google Scholar 

  4. Liao FJ, Sun ZP, Yan TC (2008) Vacuum electronics the heart of information weapons. National Defence Industry Press, Beijing (In Chinese)

    Google Scholar 

  5. Pierce JR (1950) Traveling wave tubes. Van Nostrand, New York

    Google Scholar 

  6. Varian RH, Varian SH (1939) A high frequency oscillator and amplifier. J Appl Phys 10:321

    Article  Google Scholar 

  7. Chu KR (2004) The electron cyclotron maser. Rev Mod Phys 76:489–540

    Article  Google Scholar 

  8. Liu LSG (1987) Relativistic electronics. Science Press, Beijing (In Chinese)

    Google Scholar 

  9. Nusinovich GS (2004) Introduction to the physics of gyrotrons. The Johns Hopkins University Press, Baltimore/London

    Google Scholar 

  10. Twiss RQ (1958) Radiation transfer and the possibility of negative absorption in radio astronomy. Aust J Phys 11:567–579

    Google Scholar 

  11. Gaponov AV (1959) Interaction between rectilinear electron beams and electromagnetic waves in transmission lines. Izv VUZov Radiofiz 2:836–837

    Google Scholar 

  12. Schneider J (1959) Stimulated emission of radiation by relativistic electrons in a magnetic field. Phys Rev Lett 2:504–505

    Article  Google Scholar 

  13. Hirshfield JL, Wachtell JM (1964) Electron cyclotron maser. Phys Rev Lett 12:533–536

    Article  Google Scholar 

  14. Sakamoto K, Kasugai A, Takahashi K et al (2007) Achievement of robust high-efficiency 1 MW oscillation in the hard-self-excitation region by a 170GHz continuous-wave gyrotron. Nat Phys 3:411–414

    Article  Google Scholar 

  15. Beringer MH, Kern S, Thumm M (2013) Mode selection and coaxial cavity design for a 4-MW 170-GHz gyrotron, including thermal aspects. IEEE Trans Plasma Sci 41(4):853–861

    Article  Google Scholar 

  16. Thumm M (2013) State-of-the-art of high power gyro-devices and free electron masers, Update 2012. KIT Scientific Report 7641, KIT Scientific Publishing

    Google Scholar 

  17. Bratman VL, Fedotov AE, Kalynov YK et al (1999) Moderately relativistic high-harmonic gyrotrons for millimeter/submillimeter wavelength band. IEEE Trans Plasma Sci 27:456–461

    Article  Google Scholar 

  18. Idehara T, Ogawa I, Mitsudo S et al (2004) A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet. IEEE Trans Plasma Sci 32:903–909

    Article  Google Scholar 

  19. Furuno DS, Mcdermott DB, Kou CS et al (1990) Operation of a large-orbit high-harmonic gyro-traveling-wave tube amplifier. IEEE Trans Plasma Sci 18:313–320

    Article  Google Scholar 

  20. Neilson J, Read M, Ives L (2009) Design of a permanent magnet gyrotron for active denial systems. In: 34th international conference on infrared, millimeter, and terahertz waves (IRMMW-THz 2009), 21–25 Sept 2009, Busan, Korea

    Google Scholar 

  21. Glyavin MY, Luchinin AG, Golubiatnikov GY (2008) Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys Rev Lett 100:015101

    Article  Google Scholar 

  22. Bratman VL, Kalynov YK, Manuilov VN (2009) Large-orbit gyrotron operation in the terahertz frequency range. Phys Rev Lett 102:245101

    Article  Google Scholar 

  23. Hornstein MK, Bajaj VS, Griffin RG, Temkin RJ (2007) Efficient low voltage operation of a CW gyrotron oscillator at 223 GHz. IEEE Trans Plasma Sci 35(1):27–30

    Article  Google Scholar 

  24. Glyavin MY, Zavolskiy NA, Sedov AS, Nusinovich GS (2013) Low-voltage gyrotrons. Phys Plasmas 20:033103

    Article  Google Scholar 

  25. Granatstein VL, Vitello P, Chu KR et al (1985) Design of gyrotron amplifiers for driving-1 Tev E-E+ linear colliders. IEEE Trans Nucl Sci 32:2957–2959

    Article  Google Scholar 

  26. Lawson W, Cheng J, Calame JP et al (1998) High-power operation of a three-cavity X-band coaxial gyroklystron. Phys Rev Lett 81:3030–3033

    Article  Google Scholar 

  27. Menninger WL, Danly GG, Temkin RJ (1996) Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments. IEEE Trans Plasma Sci 24:687–699

    Article  Google Scholar 

  28. He W, Donaldson CR, Zhang L, Ronald K, McElhinney P, Cross AW (2013) High power wideband gyrotron backward wave oscillator operating towards the terahertz region. Phys Rev Lett 110(16):165101

    Article  Google Scholar 

  29. Hung CL, Syu MF, Yang MT, Chen KL (2012) Selective mode suppression in a W-band second harmonic coaxial waveguide gyrotron backward-wave oscillator. Appl Phys Lett 101(3):033504

    Article  Google Scholar 

  30. Chen NC, Chang TH, Yuan CP, Idehara T, Ogawa I (2010) Theoretical investigation of a high efficiency and broadband subterahertz gyrotron. Appl Phys Lett 96(16):161501

    Article  Google Scholar 

  31. Thumm M, Arnold A, Borie E, Braz O, Dammertz G, Dumbrajs O, Koppenburg K, Kuntze M, Michel G, Piosczyk B (2001) Frequency step-tunable (114–170 GHz) megawatt gyrotrons for plasma physics applications. Fusion Eng Des 53:407–421

    Article  Google Scholar 

  32. Kreischer KE, Temkin RJ (1987) Single-mode operation of a high-power, step-tunable gyrotron. Phys Rev Lett 59(5):547–550

    Article  Google Scholar 

  33. Fliflet AW, Hargreaves TA, Manheimer WM et al (1989) Operation of a quasioptical gyrotron with variable mirror separation. Phys Rev Lett 62:2664–2667

    Article  Google Scholar 

  34. Fliflet AW, Hargreaves TA, Manheimer WM et al (1990) Initial operation of a high-power quasi-optical gyrotron. IEEE Trans Plasma Sci 18:306–312

    Article  Google Scholar 

  35. Gantenbein G, Borie E, Dammertz G et al (1994) Experimental results and numerical simulations of a high-power 140-GHz gyrotron. IEEE Trans Plasma Sci 22:861–870

    Article  Google Scholar 

  36. Chang TH, Chen SH, Barnett LR et al (2001) Characterization of stationary and nonstationary behavior in gyrotron oscillators. Phys Rev Lett 87(6):064802

    Article  Google Scholar 

  37. Nusinovich GS, Sinitsyn OV, Antonsen TM (2007) Mode switching in a gyrotron with azimuthally corrugated resonator. Phys Rev Lett 98:205101

    Article  Google Scholar 

  38. Sirigiri JR, Kreischer KE, Machuzak J et al (2001) Photonic-band-gap resonator gyrotron. Phys Rev Lett 86:5628–5631

    Article  Google Scholar 

  39. Liu SG, Yuan XS, Fu WJ et al (2007) The coaxial gyrotron with two electron beams. I. Linear theory and nonlinear theory. Phys Plasmas 14:103113

    Article  Google Scholar 

  40. Liu SG, Yuan XS, Liu DW et al (2007) The coaxial gyrotron with two electron beams. II. Dual frequency operation. Phys Plasmas 14:103114

    Article  MathSciNet  Google Scholar 

  41. Lawson W, Latham PE (1987) The design of a small-orbit large-orbit gyroklystron experiment. J Appl Phys 61:519–528

    Article  Google Scholar 

  42. Chu KR, Granatstein VL, Latham PE et al (1985) A 30-MW gyroklystron-amplifier design for high-energy linear accelerators. IEEE Trans Plasma Sci 13:424–434

    Article  Google Scholar 

  43. Lawson W, Calame JP, Hogan B et al (1991) Efficient operation of a high-power X-band gyroklystron. Phys Rev Lett 67:520–523

    Article  Google Scholar 

  44. Lawson W, Calame JP, Hogan BP et al (1992) Performance-characteristics of a high-power X-band 2-cavity gyroklystron. IEEE Trans Plasma Sci 20:216–223

    Article  Google Scholar 

  45. Calame JP, Cheng J, Hogan B et al (1994) Measurements of velocity ratio in a 90 MW gyroklystron electron-beam. IEEE Trans Plasma Sci 22:476–485

    Article  Google Scholar 

  46. Lawson W, Hogan B, Flaherty MKE et al (1996) Design and operation of a two-cavity third harmonic Ka-band gyroklystron. Appl Phys Lett 69:1849–1851

    Article  Google Scholar 

  47. Blank M, Danly BG, Levush B et al (1997) Experimental demonstration of a W-band gyroklystron amplifier. Phys Rev Lett 79:4485–4488

    Article  Google Scholar 

  48. Lawson W (2000) Design of a 70-GHz second-harmonic gyroklystron experiment for radar applications. IEEE Microw Guided Wave Lett 10:108–110

    Article  Google Scholar 

  49. Blank M, Danly BG, Levush B (2000) Experimental demonstration of W-band gyroklystron amplifiers with improved gain and efficiency. IEEE Trans Plasma Sci 28:706–711

    Article  Google Scholar 

  50. Lawson W, Ives RL, Mizuhara M et al (2001) Design of a 10-MW, 91.4-GHz frequency-doubling gyroklystron for advanced accelerator applications. IEEE Trans Plasma Sci 29:545–558

    Article  Google Scholar 

  51. Danly BG, Cheung J, Gregers-Hansen V, et al (2002) WARLOC: a high-power millimeter-wave radar. In: 27th international conference on infrared and millimeter waves, 22–26 Sept 2002. Conference digest, SANDIEGO, CA, USA

    Google Scholar 

  52. Linde GJ, Ngo MT, Danly BG et al (2008) WARLOC: a high-power coherent 94 GHz radar. IEEE Trans Aerosp Electron Syst 44:1102–1117

    Article  Google Scholar 

  53. Tolkachev A (1998) A large-aperture radar phased antenna of Ka band. In: Proceedings of the 28th Moscow international conference on antenna theory and technology, pp 22–24, Moscow, Russia

    Google Scholar 

  54. Ganguly AK, Ahn S (1989) Optimization of the efficiency in gyrotron backward-wave oscillator via a tapered axial magnetic-field. Appl Phys Lett 54:514–516

    Article  Google Scholar 

  55. Lin AT (1992) Mechanisms of efficiency enhancement in gyrotron backward-wave oscillators with tapered magnetic-fields. Phys Rev A 46:R4516–R4519

    Article  Google Scholar 

  56. Kou CS, Chen SH, Barnett LR et al (1993) Experimental-study of an injection-locked gyrotron backward-wave oscillator. Phys Rev Lett 70:924–927

    Article  Google Scholar 

  57. Kou CS (1994) Starting oscillation conditions for gyrotron backward-wave oscillators. Phys Plasmas 1:3093–3099

    Article  Google Scholar 

  58. Basten MA, Guss WC, Kreischer KE et al (1995) Experimental investigation of a 140-GHz gyrotron-backward wave oscillator. Int J Infrared Millim Waves 16:889–905

    Article  Google Scholar 

  59. Walter MT, Gilgenbach RM, Luginsland JW et al (1996) Effects of tapering on gyrotron backward-wave oscillators. IEEE Trans Plasma Sci 24:636–647

    Article  Google Scholar 

  60. Chen SH, Chu KR, Chang TH (2000) Saturated behavior of the gyrotron backward-wave oscillator. Phys Rev Lett 85:2633–2636

    Article  Google Scholar 

  61. Chen SH, Chang TH, Pao KF et al (2002) Linear and time-dependent behavior of the gyrotron backward-wave oscillator. Phys Rev Lett 89:268303

    Article  Google Scholar 

  62. Grudiev A, Schunemann K (2002) Nonstationary behavior of the gyrotron backward-wave oscillator. IEEE Trans Plasma Sci 30:851–858

    Article  Google Scholar 

  63. Yeh YS, Chang TH, Wu TS (2004) Comparative analysis of gyrotron backward-wave oscillators operating at different cyclotron harmonics. Phys Plasmas 11:4547–4553

    Article  Google Scholar 

  64. Hung CL, Yeh YS (2005) Stability analysis of a coaxial-waveguide gyrotron traveling-wave amplifier. Phys Plasmas 12:103102

    Article  Google Scholar 

  65. He W, Cross AW, Phelps ADR et al (2006) Theory and simulations of a gyrotron backward wave oscillator using a helical interaction waveguide. Appl Phys Lett 89:091504

    Article  Google Scholar 

  66. Pao KF, Chang TH, Chen SH et al (2006) Rise and fall time behavior of the gyrotron backward-wave oscillator. Phys Rev E 74:046405

    Article  Google Scholar 

  67. Chen NC, Yu CF, Chang TH (2007) A TE21 second-harmonic gyrotron backward-wave oscillator with slotted structure. Phys Plasmas 14:123105

    Article  Google Scholar 

  68. Chang TH, Fan CT, Pao KF et al (2007) Stability and tunability of the gyrotron backward-wave oscillator. Appl Phys Lett 90:191501

    Article  Google Scholar 

  69. Fan CT, Chang TH, Pao KF et al (2007) Stable, high efficiency gyrotron backward-wave oscillator. Phys Plasmas 14:093102

    Article  Google Scholar 

  70. Du CH, Liu PK, Xue QZ et al (2008) Effect of a backward wave on the stability of an ultrahigh gain gyrotron traveling-wave amplifier. Phys Plasmas 15:123107

    Article  Google Scholar 

  71. Chang TH, Yu CF, Hung CL et al (2008) W-band TE01 gyrotron backward-wave oscillator with distributed loss. Phys Plasmas 15:073105

    Article  Google Scholar 

  72. Chang TH, Idehara T, Ogawa I et al (2009) Frequency tunable gyrotron using backward-wave components. J Appl Phys 105:063304

    Article  Google Scholar 

  73. Yuan CP, Chang TH, Chen NC et al (2009) Magnetron injection gun for a broadband gyrotron backward-wave oscillator. Phys Plasmas 16:073109

    Article  MathSciNet  Google Scholar 

  74. Du CH, Qi XB, Liu PK, Chang TH, Xu SX, Geng ZH, Hao BL, Xiao L, Liu GF, Li ZD, Shi SH, Wang H (2014) Theory and experiment of a W-band tunable gyrotron oscillator. IEEE Trans Electron Devices, to be published in July Issue 2014

    Google Scholar 

  75. Chu KR (2002) Overview of research on the gyrotron traveling-wave amplifier. IEEE Trans Plasma Sci 30:903–908

    Article  Google Scholar 

  76. Barnett LR, Baird JM, Lau YY et al (1980) A high gain single stage gyrotron traveling-wave amplifier. Int Electron Devices Meet 26:314–317

    Google Scholar 

  77. Barnett LR, Chu KR, Baird JM et al (1979) Gain, saturation, and bandwidth measurements of the NRL gyrotron travelling wave amplifier. Int Electron Devices Meet 25:164–167

    Google Scholar 

  78. Park GS, Choi JJ, Park SY et al (1995) Gain broadening of 2-stage tapered gyrotron traveling-wave tube amplifier. Phys Rev Lett 74:2399–2402

    Article  Google Scholar 

  79. Chu KR, Barnett LR, Chen HY et al (1995) Stabilization of absolute instabilities in the gyrotron traveling-wave amplifier. Phys Rev Lett 74:1103–1106

    Article  Google Scholar 

  80. Chu KR, Chen HY, Hung CL et al (1998) Ultrahigh gain gyrotron traveling wave amplifier. Phys Rev Lett 81:4760–4763

    Article  Google Scholar 

  81. Wang QS, McDermott DB, Luhmann NC (1996) Operation of a stable 200-kW second-harmonic gyro-TWT amplifier. IEEE Trans Plasma Sci 24:700–706

    Article  Google Scholar 

  82. Chong CK, McDermott DB, Luhmann NC (1998) Large-signal operation of a third-harmonic slotted gyro-TWT amplifier. IEEE Trans Plasma Sci 26:500–507

    Article  Google Scholar 

  83. Calame JP, Garven M, Danly BG et al (2002) Gyrotron-traveling wave-tube circuits based on lossy ceramics. IEEE Trans Electron Devices 49:1469–1477

    Article  Google Scholar 

  84. Garven M, Calame JP, Danly BG et al (2002) A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region. IEEE Trans Plasma Sci 30:885–893

    Article  Google Scholar 

  85. Pershing DE, Nguyen KT, Calame JP et al (2004) A TE11 Ka-band gyro-TWT amplifier with high-average power compatible distributed loss. IEEE Trans Plasma Sci 32:947–956

    Article  Google Scholar 

  86. Nguyen KT, Calame JP, Pershing DE et al (2001) Design of a Ka-band gyro-TWT for radar applications. IEEE Trans Electron Devices 48:108–115

    Article  Google Scholar 

  87. Denisov GG, Bratman VL, Phelps ADR et al (1998) Gyro-TWT with a helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth. IEEE Trans Plasma Sci 26:508–518

    Article  Google Scholar 

  88. Burt G, Samsonov SV, Ronald K et al (2004) Dispersion of helically corrugated waveguides: analytical, numerical, and experimental study. Phys Rev E 70:046402

    Article  Google Scholar 

  89. Bratman VL, Cross AW, Denisov GG et al (2000) High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide. Phys Rev Lett 84:2746–2749

    Article  Google Scholar 

  90. Denisov GG, Bratman VL, Cross AW et al (1998) Gyrotron traveling wave amplifier with a helical interaction waveguide. Phys Rev Lett 81:5680–5683

    Article  Google Scholar 

  91. Sirigiri JR (ed) (1999) Theory and design study of a novel quasi-optical gyrotron traveling wave amplifier, M.S. Thesis, Dept of Electrical Engineering and Computer Science, MIT, Oct, 1999

    Google Scholar 

  92. Sirigiri JR, Shapiro MA, Temkin RJ (2003) High-power 140-GHz quasioptical gyrotron traveling-wave amplifier. Phys Rev Lett 90:258302

    Article  Google Scholar 

  93. Chu KR, Chen HY, Hung CL et al (1999) Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE Trans Plasma Sci 27:391–404

    Article  Google Scholar 

  94. Lau YY, Barnett LR, Granatstein VL (1982) Gyrotron traveling wave amplifier: IV. Analysis of launching losses. Int J Infrared Millim Waves 3:45–62

    Article  Google Scholar 

  95. Lau YY, Chu KR, Barnett LR et al (1981) Gyrotron traveling wave amplifier: I. Analysis of oscillations. Int J Infrared Millim Waves 2:373–393

    Article  Google Scholar 

  96. Lau YY, Chu KR, Barnett LR et al (1981) Gyrotron traveling wave amplifier: II. Effects of velocity spread and wall resistivity. Int J Infrared Millim Waves 2:395–413

    Article  Google Scholar 

  97. Lau YY, Chu KR (1981) Gyrotron traveling wave amplifier: III. A proposed wideband fast wave amplifier. Int J Infrared Millim Waves 2:415–425

    Article  Google Scholar 

  98. Chang TH, Chen NC (2006) Transition of absolute instability from global to local modes in a gyrotron traveling-wave amplifier. Phys Rev E 74:016402

    Article  Google Scholar 

  99. Du CH, Liu PK (2009) Stabilization of the potential multi-steady-state absolute instabilities in a gyrotron traveling-wave amplifier. Phys Plasmas 16:103107

    Article  Google Scholar 

  100. Piosczyk B, Arnold A, Dammertz G et al (2002) Coaxial cavity gyrotron – recent experimental results. IEEE Trans Plasma Sci 30:819–827

    Article  Google Scholar 

  101. Hung CL (2006) Linear analysis of a coaxial-waveguide gyrotron traveling-wave tube. Phys Plasmas 13:033109

    Article  Google Scholar 

  102. Wang QS, Mcdermott DB, Luhmann NC (1995) Demonstration of marginal stability theory by a 200-kW 2nd-harmonic gyro-TWT amplifier. Phys Rev Lett 75:4322–4325

    Article  Google Scholar 

  103. Barnett LR, Lau YY, Chu KR et al (1981) An experimental wideband gyrotron traveling-wave amplifier. IEEE Trans Electron Devices 28:872–875

    Article  Google Scholar 

  104. Park GS, Park SY, Kyser RH et al (1994) Broad-band operation of a Ka-band tapered gyro-traveling wave amplifier. IEEE Trans Plasma Sci 22:536–543

    Article  Google Scholar 

  105. Leou KC, McDermott DB, Luhmann NC (1996) Large-signal characteristics of a wide-band dielectric-loaded gyro-TWT amplifier. IEEE Trans Plasma Sci 24:718–726

    Article  Google Scholar 

  106. Rao SJ, Jain PK, Basu BN (1996) Broadbanding of a gyro-TWT by dielectric-loading through dispersion shaping. IEEE Trans Electron Devices 43:2290–2299

    Article  Google Scholar 

  107. Rao SJ, Jain PK, Basu BN (1996) Two-stage dielectric-loading for broadbanding a gyro-TWT. IEEE Electron Device Lett 17:303–305

    Article  Google Scholar 

  108. Cross AW, He W, Phelps ADR et al (2007) Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun. Appl Phys Lett 90:253501

    Article  Google Scholar 

  109. Guo H, Chen L, Keren H et al (1982) Measurement of gain for slow cyclotron waves on an annular electron beam. Phys Rev Lett 49:730–733

    Article  Google Scholar 

  110. Fu WJ, Yan Y, Yuan XS et al (2009) Two-beam magnetron injection guns for coaxial gyrotron with two electron beams. Phys Plasmas 16:23103

    Article  Google Scholar 

  111. Yan R, Luo Y, Liu G, Pu Y (2012) Design and experiment of a Q-band gyro-TWT loaded with lossy dielectric. IEEE Trans Electron Devices 59(12):3612–3617

    Article  Google Scholar 

  112. Wang E, Zeng X et al (2012) Experimental study of high-power gyrotron traveling-wave tube with periodic lossy material loading. IEEE Trans Plasma Sci 40(7):1846–1853

    Article  Google Scholar 

  113. Zhang SC, Ouyang ZB, Qiu CR et al (2004) Coaxial-waveguide gyrotron amplifier operating with high power and ultrahigh gain in millimeter and submillimeter waves. IEEE Trans Plasma Sci 32:981–986

    Article  Google Scholar 

  114. Hung CL (2012) High-power, stable Ka/V dual-band gyrotron traveling-wave tube amplifier. Appl Phys Lett 100(20):203502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Du, CH., Liu, PK. (2014). Review of Gyrotron Traveling-Wave Tube Amplifiers. In: Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54728-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54728-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54727-0

  • Online ISBN: 978-3-642-54728-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics