Skip to main content

Polarization Vision of Aquatic Insects

  • Chapter
  • First Online:
Polarized Light and Polarization Vision in Animal Sciences

Part of the book series: Springer Series in Vision Research ((SSVR,volume 2))

Abstract

In this chapter we show that primary aquatic insects fly predominantly in mid-morning, and/or around noon and/or at nightfall. We describe the different types of their diurnal flight activity rhythm characterised by peaks at low and/or high solar elevations. We present here experimental evidence that the polarization visibility Q(θ) of water surfaces is always maximal at the lowest (dawn and dusk) and highest (noon) angles of solar elevation θ for dark waters, while Q(θ) is maximal at dawn and dusk (low solar elevations) for bright waters both under clear and partly cloudy skies. The θ-dependent reflection-polarization patterns, combined with an appropriate air temperature, clearly explain why polarotactic aquatic insects disperse to new habitats in mid-morning, and/or around noon and/or at dusk. This phenomenon is called the “polarization sundial” of dispersing aquatic insects. We also show that non-biting midges (Chironomidae, Diptera) are positively polarotactic and like many other aquatic insects, their females are attracted to horizontally polarized light. We present here measured thresholds (i.e., the minimum degrees of linear polarization of reflected light that can elicit positive polarotaxis) of the ventral polarization sensitivity in mayflies, dragonflies and tabanid flies. The mayflies Palingenia longicauda swarm exclusively over the river surface; thus, they need not search for water. It could be assumed that this species is not polarotactic. We show here that also P. longicauda has positive polarotaxis, which, however, can be observed only when the animals are displaced from the water and then released above artificial test surfaces. P. longicauda is the first species in which polarotactic water detection was demonstrated albeit it never leaves the water surface, and thus, a polarotactic water detection seems unnecessary for it. The yellow fever mosquito, Aedes aegypti, has been thought to locate its breeding habitats exclusively by chemical cues. We demonstrate here that horizontally polarized light can also attract ovipositing Ae. aegypti females when they are deprived of chemical cues. Aedes aegypti is the first known water-associated species in which polarotaxis exists, but does not play a dominant role in locating water bodies and can be constrained in the presence of chemical cues. Finally, we deal with the negative polarotaxis in the desert locust, Schistocerca gregaria, the ventral eye region of which detects the horizontally polarized water-reflected light, and thus can navigate towards or away from large water surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan SA, Day JF, Edman JD (1987) Visual ecology of biting flies. Annu Rev Entomol 32:297–316

    Article  PubMed  CAS  Google Scholar 

  • Andrikovics S, Turcsányi I (2001) Tisza mayfly—ecology of an endangered species. Booklet of Tisza Club 10:1–69 (in Hungarian)

    Google Scholar 

  • Behr H (1993) Wiederfangergebnisse aus Markierungsexperimenten an fünf in einem Moorgewässer koexistierenden Hydroporus-Arten (Coleoptera; Dytiscidae: Imagines). Zoologisches Jahrbuch der Systematik 120:201–214

    Google Scholar 

  • Belton P (1967) The effect of illumination; pool brightness on oviposition by Culex restuans (Theo.) in the field. Mosq News 27:66–82

    Google Scholar 

  • Bentley MD, Day DF (1989) Chemical ecology and behavioural aspects of mosquito oviposition. Annu Rev Entomol 34:401–421

    Article  PubMed  CAS  Google Scholar 

  • Bernáth B, Szedenics G, Molnár G, Kriska G, Horváth G (2001) Visual ecological impact of “shiny black anthropogenic products” on aquatic insects: oil reservoirs and plastic sheets as polarized traps for insects associated with water. Arch Nat Conserv Landsc Res 40(2):89–109

    Google Scholar 

  • Bernáth B, Szedenics G, Wildermuth H, Horváth G (2002) How can dragonflies discern bright and dark waters from a distance? The degree of polarization of reflected light as a possible cue for dragonfly habitat selection. Freshw Biol 47:1707–1719

    Article  Google Scholar 

  • Bernáth B, Gál J, Horváth G (2004) Why is it worth flying at dusk for aquatic insects? Polarotactic water detection is easiest at low solar elevations. J Exp Biol 207:755–765

    Article  PubMed  Google Scholar 

  • Bernáth B, Horváth G, Gál J, Meyer-Rochow VB (2008) Polarized light and oviposition site selection in the yellow fever mosquito: No evidence for positive polarotaxis in Aedes aegypti. Vis Res 48:1449–1455

    Article  PubMed  Google Scholar 

  • Bernáth B, Horváth G, Meyer-Rochow VB (2012) Polarotaxis in egg-laying yellow fever mosquitoes Aedes (Stegomyia) aegypti is masked due to infochemicals. J Insect Physiol 58:1000–1006

    Article  PubMed  Google Scholar 

  • Blahó M, Egri Á, Barta A, Antoni G, Kriska G, Horváth G (2012) How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics. Vet Parasitol 189:353–365

    Article  PubMed  Google Scholar 

  • Boda P, Csabai Z (2013) When do beetles and bugs fly? A unified scheme for describing seasonal flight behaviour of highly dispersing primary aquatic insects. Hydrobiologia 703:133–147

    Article  Google Scholar 

  • Brodskiy AK (1973) The swarming behavior of mayflies (Ephemeroptera). Entomol Rev 52:33–39

    Google Scholar 

  • Chadee DD (1988) Landing periodicity of the mosquito Aedes aegypti in Trinidad in relation to the timing of insecticidal space-spraying. Med Vet Entomol 2:189–192

    Article  PubMed  CAS  Google Scholar 

  • Clements AN (1999) The biology of mosquitoes. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Coulson KL (1988) Polarization and radiance of light in the atmosphere. A. Deepak, Hampton, VA

    Google Scholar 

  • Cranston PS (1995) Introduction. In: Armitage P, Cranston PS, Pinder LCV (eds) The chironomidae. The biology and ecology of non-biting midges. Chapman Hall, London, pp 1–7

    Google Scholar 

  • Csabai Z, Boda P (2005) Effects of the wind speed on the migration activity of aquatic insects (Coleoptera, Heteroptera). Acta Biologia Debrecina Supplementum Oecologica Hungarica 13:37–42

    Google Scholar 

  • Csabai Z, Boda P, Bernáth B, Kriska G, Horváth G (2006) A ‘polarisation sun-dial’ dictates the optimal time of day for dispersal by flying aquatic insects. Freshw Biol 51:1341–1350

    Article  Google Scholar 

  • Csabai Z, Kálmán Z, Szivák I, Boda P (2012) Diel flight behaviour and dispersal patterns of aquatic Coleoptera and Heteroptera species with special emphasis on the importance of seasons. Naturwissenschaften 99:751–765

    Article  PubMed  CAS  Google Scholar 

  • Eggers A, Gewecke M (1993) The dorsal rim area of the compound eye and polarization vision in the desert locust (Schistocerca gregaria). In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser Verlag, Basel, pp 101–109

    Google Scholar 

  • Egri Á, Blahó M, Sándor A, Kriska G, Gyurkovszky M, Farkas R, Horváth G (2012) New kind of polarotaxis governed by degree of polarization: Attraction of tabanid flies to differently polarizing host animals and water surfaces. Naturwissenschaften 99:407–416 + electronic supplement

    Google Scholar 

  • Egri Á, Blahó M, Száz D, Barta A, Kriska G, Antoni G, Horváth G (2013) A new tabanid trap applying a modified concept of the old flypaper: linearly polarising sticky black surfaces as an effective tool to catch polarotactic horseflies. Int J Parasitol 43:555–563

    Article  PubMed  Google Scholar 

  • Fernando CH (1958) The colonization of small freshwater habitats by aquatic insects. 1. General discussion, methods and colonization by the aquatic Coleoptera. Ceylon J Sci 1:117–154

    Google Scholar 

  • Fink TJ, Andrikovics S (1997) The presumed role of wing sensory structures in the unique mating behaviour of the endangered European mayflies Palingenia lomgicauda (Olivier) and Palingenia fuliginosa (Georgi) (Insecta, Ephemeroptera). In: Landolt P, Sartori M (eds) Ephemeroptera and plecoptera: biology-ecology-systematics. MTL, Fribourg, pp 326–331

    Google Scholar 

  • Ganesan K, Mendki MJ, Suryanarayana MV, Prakash S, Malhotra RC (2006) Studies on Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Aust J Entomol 45:75–78

    Article  Google Scholar 

  • Günther A (2003) Eiablage von Sympetrum vulgatum auf ein parkendes Auto (Odonata: Libellulidae). Libellula 22:19–23

    Google Scholar 

  • Halpern M, Raats D, Lavion R, Mittler S (2006) Dependent population dynamics between chironomids (nonbiting midges) and Vibrio cholerae. FEMS Microbiol Ecol 55:98–104

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. In: Ottoson D (ed) Progress in sensory physiology, vol 5. Springer, Heidelberg, pp 1–79

    Chapter  Google Scholar 

  • Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208

    Article  PubMed  CAS  Google Scholar 

  • Homberg U, Hofer S, Mappes M, Vitzthum H, Pfeiffer K, Gebhardt S, Müller M, Paech A (2004) Neurobiology of polarization vision in the locust Schistocerca gregaria. Acta Biol Hung 55:81–89

    Article  PubMed  CAS  Google Scholar 

  • Horváth G, Kriska G (2008) Polarization vision in aquatic insects and ecological traps for polarotactic insects. In: Lancaster J, Briers RA (eds) Aquatic insects: challenges to populations. CAB International Publishing, Wallingford, Oxon, pp 204–229, Chapter 11

    Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, Heidelberg

    Book  Google Scholar 

  • Horváth G, Zeil J (1996) Kuwait oil lakes as insect traps. Nature 379:303–304

    Article  Google Scholar 

  • Horváth G, Bernáth B, Molnár G (1998) Dragonflies find crude oil visually more attractive than water: multiple-choice experiments on dragonfly polarotaxis. Naturwissenschaften 85:292–297

    Article  Google Scholar 

  • Horváth G, Blahó M, Egri Á, Kriska G, Seres I, Robertson B (2010) Reducing the maladaptive attractiveness of solar panels to polarotactic insects. Conserv Biol 24:1644–1653

    Article  PubMed  Google Scholar 

  • Horváth G, Malik P, Kriska G, Wildermuth H (2007) Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshw Biol 52:1700–1709

    Article  Google Scholar 

  • Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100

    Article  PubMed  Google Scholar 

  • Horváth G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7:317–325

    Article  Google Scholar 

  • Horváth G, Móra A, Bernáth B, Kriska G (2011) Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarized light. Physiol Behav 104:1010–1015 + cover picture

    Google Scholar 

  • Jäch MA (1997) Daytime swarming of rheophilic water beetles in Austria (Coleoptera: Elmidae, Hydraenidae, Haliplidae). Latissimus 9:10–11

    Google Scholar 

  • Kalmus H (1958) Responses of insects to polarized light in the presence of dark reflecting surfaces. Nature 182:1526–1527

    Article  Google Scholar 

  • Kawada H, Takemura SY, Arikawa K, Takagi M (2005) Comparative study on nocturnal behavior of Aedes aegypti and Aedes albopictuts. J Med Entomol 42:312–318

    Article  PubMed  Google Scholar 

  • Kennedy JS (1942) On water finding and oviposition by captive mosquitoes. Bull Entomol Res 32:279–301

    Article  Google Scholar 

  • Kovrov BG, Monchadskiy AS (1963) About the possibility of using polarized light to attract insects. Entomol Rev 62(1):49–55, in Russian, see a review in English in Entomological Review of Washington 42:25–28

    Google Scholar 

  • Kriska G, Horváth G, Andrikovics S (1998) Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. J Exp Biol 201:2273–2286

    PubMed  CAS  Google Scholar 

  • Kriska G, Csabai Z, Boda P, Malik P, Horváth G (2006) Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarization signals. Proc R Soc B 273:1667–1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriska G, Bernáth B, Horváth G (2007) Positive polarotaxis in a mayfly that never leaves the water surface: polarotactic water detection in Palingenia longicauda (Ephemeroptera). Naturwissenschaften 94:148-154 + cover picture

    Google Scholar 

  • Kriska G, Malik P, Szivák I, Horváth G (2008) Glass buildings on river banks as “polarized light traps” for mass-swarming polarotactic caddis flies. Naturwissenschaften 95:461–467

    Article  PubMed  CAS  Google Scholar 

  • Kriska G, Bernáth B, Farkas R, Horváth G (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Insect Physiol 55:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Labhart T (1996) How polarization-sensitive interneurones of crickets perform at low degrees of polarization. J Exp Biol 199:1467–1475

    PubMed  Google Scholar 

  • Ladócsy K (1930) The mating flight of the Tisza mayfly (Palingenia longicauda, Oliv.) in 1929 in Szeged, part 2. Fishery 31(7–8):28–30, in Hungarian

    Google Scholar 

  • Landin J (1968) Weather and diurnal periodicity of flight by Helophorus brevipalpis Bedel (Col. Hydrophilidae). Opusc Entomol 33:28–36

    Google Scholar 

  • Landin J, Stark E (1973) On flight thresholds for temperature and wind velocity, 24-hour flight periodicity and migration of the water beetle Helophorus brevipalpis. J Zool Upps Univ Suppl 1:105–114

    Google Scholar 

  • Lerner A, Meltser N, Sapir N, Erlick C, Shashar N, Broza M (2008) Reflected polarization guides chironomid females to oviposition sites. J Exp Biol 211:3536–3543

    Article  PubMed  Google Scholar 

  • Lerner A, Sapir N, Erlick C, Meltser N, Broza M, Shashar N (2011) Habitat availability mediates chironomid density-dependent oviposition. Oecologia 165:905–914

    Article  PubMed  Google Scholar 

  • Malik P, Hegedüs R, Kriska G, Horváth G (2008) Imaging polarimetry of glass buildings: Why do vertical glass surfaces attract polarotactic insects? Appl Opt 47:4361–4374

    Article  PubMed  Google Scholar 

  • Mappes M, Homberg U (2003) Behavioral analysis of polarization vision in tethered flying locusts. J Comp Physiol A 190:61–68

    Article  Google Scholar 

  • McCrae AWR (1984) Oviposition by African malaria vector mosquitoes. II. Effect of site tone, water type and conspecific immatures on target selection by freshwater Anopheles gambiae Giles, sensu lato. Ann Trop Med Parasitol 78:307–318

    PubMed  CAS  Google Scholar 

  • Meltser N, Kashi Y, Broza M (2008) Does polarized light guide chironomids to navigate toward water surfaces? Bol Mus Munic Funchal (História Natural) 13(Suppl):141–149

    Google Scholar 

  • Mendki MJ, Ganesan S, Prakash MVS, Suryanarayana RC, Malhotra KM, Rao KM, Vaidyanathawamy R (2000) Heneicosane: an oviposition-attractant pheromone of larval origin in Aedes aegypti mosquito. Curr Sci 78:1295–1296

    CAS  Google Scholar 

  • Meyer-Rochow VB, Waldvogel H (1979) Visual behaviour and the structure of dark and light-adapted larval and adult eyes of the New Zealand glowworm Arachnocampa luminosa (Mycetophylidae, Diptera). J Insect Physiol 25:601–613

    Article  Google Scholar 

  • Muir LE, Thorne MJ, Kay BH (1992) Aedes aegypti (Diptera, Culicidae) vision: spectral sensitivity and other perceptual paramteres of the female eye. J Med Entomol 29:278–281

    PubMed  CAS  Google Scholar 

  • Muirhead-Thompson RC (1940) Studies on the behaviour of Anopheles minimus II: The influence of water movement on the selection of the breeding place. J Malar Inst India 3:295–322

    Google Scholar 

  • Navarro-Silva MA, Marques FA, Duque LJE (2009) Review of semiochemicals that mediate the oviposition of mosquitoes: a possible sustainable tool for the control and monitoring of Culicidae. Rev Bras Entomol 53(1):1–6

    Article  Google Scholar 

  • Nilsson AN (1997) On flying Hydroporus and the attraction of H. incognitus to red car roofs. Latissimus 9:12–16

    Google Scholar 

  • Nilsson AN, Svensson BW (1992) Taking off in cold blood—Dytiscus marginalis flying at 6.4 °C. Balfour-Browne Club Newslett 50:1–2

    Google Scholar 

  • Nowinszky L (2003) The handbook of light trapping. Savaria University Press, Szombathely, Hungary

    Google Scholar 

  • Popham EJ (1964) The migration of aquatic bugs with special reference to the Corixidae (Hemiptera, Heteroptera). Archiv für Hidrobiologie 60:450–496

    Google Scholar 

  • Rossel S, Wehner R (1984) How bees analyse the polarization patterns in the sky. J Comp Physiol A 154:607–615

    Article  Google Scholar 

  • Sato S (1959) Structure and development of the compound eye of Culex (Lutzia) vorax Edwards. (Morphological studies on the compound eye in the mosquito, no. VI). Scientific Reports of the Tohoku University (Series 4) 25:99–110

    Google Scholar 

  • Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540

    Article  Google Scholar 

  • Schwind R (1995) Spectral regions in which aquatic insects see reflected polarized light. J Comp Physiol A 177:439–448

    Article  Google Scholar 

  • Seng CM, Jute N (1994) Breeding of Aedes aegypti (L.) and Aedes albopictus (Skuse) in urban housing of Sibu town, Sarawak. Southeast Asian J Trop Med Public Health 25:543–548

    PubMed  CAS  Google Scholar 

  • Shashar N, Sabbah S, Aharoni N (2005) Migrating locusts can detect polarized reflections to avoid flying over the sea. Biol Lett 1:472–475

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stevani CV, Porto JS, Trindade DJ, Bechara EJH (2000a) Automotive clearcoat damage due to oviposition of dragonflies. J Appl Polym Sci 75:1632–1639

    Article  CAS  Google Scholar 

  • Stevani CV, Faria DLA, Porto JS, Trindade DJ, Bechara EJH (2000b) Mechanism of automotive clearcoat damage by dragonfly eggs investigated by surface enhanced Raman scattering. Polym Degrad Stab 68:61–66

    Article  CAS  Google Scholar 

  • Svihla A (1961) An unusual ovipositing activity of Pantala flavescens Fabricius. Tombo 4:18

    Google Scholar 

  • Torralba-Burrial A, Ocharan FJ (2003) Coches como hábitat para libélulas? Algunos machos de Crocothemis erythraea creen que sí. Boletin de la Sociedad Entomologia Aragonesa 32:214–215

    Google Scholar 

  • Van de Meutter F, De Meester L, Stoks R (2005) Water turbidity affects predator-prey interactions in a fish-damselfly system. Oecologia 144:327–336

    Article  PubMed  Google Scholar 

  • van Vondel BJ (1998) Another case of water beetles landing on a red car roof. Latissimus 10:29

    Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge, MA, USA

    Google Scholar 

  • Watson JAL (1992) Oviposition by exophytic dragonflies on vehicles. Notulae Odonatologicae 3:137

    Google Scholar 

  • Weigelhofer G, Weissmair W, Waringer J (1992) Night migration activity and the influence of meteorological parameters on light-trapping for aquatic Heteroptera. Zool Anz 229:209–218

    Google Scholar 

  • Wellington WG (1974) Change in mosquito flight associated with natural changes in polarized light. Can Entomol 106:941–948

    Article  Google Scholar 

  • Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85:297–302

    Article  CAS  Google Scholar 

  • Wildermuth H, Horváth G (2005) Visual deception of a male Libellula depressa by the shiny surface of a parked car (Odonata: Libellulidae). Int J Odonatol 8:97–105

    Article  Google Scholar 

  • Wolf T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Bate M, Arias AM (eds) The development of Drosophila melanogaster, vol II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1277–1325

    Google Scholar 

  • Wyniger R (1955) Beobachtungen über die Eiablage von Libellula depressa L. (Odonata, Libellulidae). Mitteilungen der Entomologischen Gesellschaft Basel NF 5:62–63

    Google Scholar 

  • Yokohari F (1999) Hygro- and thermoreceptors. In: Eguchi E, Tominaga Y (eds) Atlas of Arthropod sensory receptors. Springer, Berlin, pp 191–210

    Google Scholar 

  • Zalom FG, Grigarick AA, Way MO (1990) Diel flight periodicities of some Dytiscidae (Coleoptera) associated with California rice paddies. Ecol Entomol 5:183–187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Horváth .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Colour Version of Fig. 5.12

Photograph of chironomid specimens (Chironomus riparius, Micropsectra atrofasciata, Micropsectra notescens, Rheocricotopus atripes) trapped by the black oil-filled tray used in the choice experiments of Horváth et al. (2011) [after Fig. 3 on page 1013 of Horváth et al. (2011)] (CDR 3421 kb)

Colour Version of Fig. 5.14

Palingenia longicauda mayflies swarm immediately above the river surface. The photographs were taken by Sándor Zsila [after Fig. 1 on page 149 of Kriska et al. 2007] (CDR 1659 kb)

Colour Version of Fig. 5.15

(a, b) Male Palingenia longicauda mayflies flying immediately above a horizontal shiny black plastic sheet. (c) A male P. longicauda settling down onto the black plastic sheet. (d) A female P. longicauda laying eggs onto the black plastic sheet [after Fig. 2 on page 151 of Kriska et al. 2007] (CDR 1291 kb)

Colour Version of Fig. 5.17

Eggs (a), a larva (b), a pupa (c) and a female adult (d) of Aedes aegypti (http://www.hudsonregional.org) (CDR 1610 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horváth, G., Csabai, Z. (2014). Polarization Vision of Aquatic Insects. In: Horváth, G. (eds) Polarized Light and Polarization Vision in Animal Sciences. Springer Series in Vision Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54718-8_5

Download citation

Publish with us

Policies and ethics