Skip to main content

Polarized-Light Processing in Insect Brains: Recent Insights from the Desert Locust, the Monarch Butterfly, the Cricket, and the Fruit Fly

  • Chapter
  • First Online:
Polarized Light and Polarization Vision in Animal Sciences

Part of the book series: Springer Series in Vision Research ((SSVR,volume 2))

Abstract

The pattern of linearly polarized light in the sky can be used for orientation behavior by many insects. Although such behavioral responses have been well described in bees and ants over several decades, until recently it remained largely elusive how polarized-light information is processed in the insect brain. However, over the last decade, substantial advances in understanding polarized-light processing have been made, based on behavioral, electrophysiological, and anatomical data. Particularly, progress was made in the desert locust, but based on comparative work in the field cricket, the monarch butterfly, and the fruit fly broader conclusions about how polarized-light information is encoded in the insect brain in general begin to emerge. After polarized light is detected by photoreceptors of specialized parts of the compound eye, this information passes through the optic lobe, the anterior optic tubercle, and the central complex. In these brain regions, detailed neural responses to polarized light have been characterized in a large set of anatomically defined neurons that together comprise the polarization vision network. This work has begun to unravel how polarized light is integrated with unpolarized light, and how response characteristics of involved neurons are modulated in context-dependent ways. Eventually, all skylight cues appear to be combined to generate a neural representation of azimuthal space around the animal in the central complex of the brain, which could be used as a basis for directed behavior. Polarized-light information is likely contributing to such a representation in many insects and thus this modality could be crucial for illuminating how the insect brain in general encodes the position of the animal in space, a task that all animal brains have to master.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barta A, Horváth G (2004) Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV. J Theor Biol 226:429–437

    PubMed  Google Scholar 

  • Beugnon G, Campan R (1989) Homing in the field cricket, Gryllus campestris. J Insect Behav 2:187–198

    Google Scholar 

  • Blum M, Labhart T (2000) Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarization-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A 186:119–128

    PubMed  CAS  Google Scholar 

  • Brines ML, Gould JL (1982) Skylight polarization patterns and animal orientation. J Exp Biol 96:69–91

    Google Scholar 

  • Brunner D, Labhart T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol 12:1–10

    Google Scholar 

  • Coulson KL (1988) Polarization and intensity of light in the atmosphere. A. Deepak Publishing, Hampton, VA, USA

    Google Scholar 

  • Eggers A, Gewecke M, Wiese K, Popov AV, Renninger G (1993) The dorsal rim area of the compound eye and polarization vision in the desert locust (Schistocerca gregaria). In: Wiese K (ed) Sensory systems in arthropods. Birkhäuser, Basel, pp 101–109

    Google Scholar 

  • el Jundi B, Homberg U (2010) Evidence for the possible existence of a second polarization-vision pathway in the locust brain. J Insect Physiol 56:971–979

    PubMed  Google Scholar 

  • el Jundi B, Homberg U (2012) Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarious locusts. J Neurophys 108:1695–1710

    Google Scholar 

  • el Jundi B, Heinze S, Lenschow C, Kurylas AE, Rohlfing T, Homberg U (2010) The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis. Front Syst Neurosci 3:21

    PubMed  PubMed Central  Google Scholar 

  • el Jundi B, Pfeiffer K, Homberg U (2011) A distinct layer of the medulla integrates sky compass signals in the brain of an insect. PLoS One 6:e27855

    PubMed  PubMed Central  Google Scholar 

  • Fischbach KF, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I.: a Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475

    Google Scholar 

  • Froy O, Gotter AL, Casselman AL, Reppert SM (2003) Illuminating the circadian clock in monarch butterfly migration. Science 300:1303–1305

    PubMed  CAS  Google Scholar 

  • Gál J, Horváth G, Barta A, Wehner R (2001a) Polarization of the moonlit clear night sky measured by full-sky imaging polarimetry at full moon: comparison of the polarization of moonlit and sunlit skies. J Geophys Res D 106:22647–22653

    Google Scholar 

  • Gál J, Horváth G, Meyer-Rochow VB, Wehner R (2001b) Polarization patterns of the summer sky and its neutral points measured by full-sky imaging polarimetry in Finnish Lapland north of the Arctic Circle. Proc R Soc A 457:1385–1399

    Google Scholar 

  • Guerra PA, Merlin C, Gegear RJ, Reppert SM (2012) Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies. Nat Commun 3, article no 958

    Google Scholar 

  • Hanesch U, Fischbach KF, Heisenberg M (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:343–366

    Google Scholar 

  • Hegedüs R, Horváth G (2004a) How and why are uniformly polarization-sensitive retinae subject to polarization-related artefacts? Correction of some errors in the theory of polarization-induced false colours. J Theor Biol 230:77–87

    PubMed  Google Scholar 

  • Hegedüs R, Horváth G (2004b) Polarizational colours could help polarization-dependent colour vision systems to discriminate between shiny and matt surfaces, but cannot unambiguously code surface orientation. Vis Res 44:2337–2348

    PubMed  Google Scholar 

  • Hegedüs R, Horváth Á, Horváth G (2006) Why do dusk-active cockchafers detect polarization in the green? The polarization vision in Melolontha melolontha is tuned to the high polarized intensity of downwelling light under canopies during sunset. J Theor Biol 238:230–244

    PubMed  Google Scholar 

  • Hegedüs R, Åkesson S, Horváth G (2007a) Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies. J Opt Soc Am A 24:2347–2356

    Google Scholar 

  • Hegedüs R, Åkesson S, Horváth G (2007b) Anomalous celestial polarization caused by forest fire smoke: why do some insects become visually disoriented under smoky skies? Appl Opt 46:2717–2726

    PubMed  Google Scholar 

  • Hegedüs R, Åkesson S, Wehner R, Horváth G (2007c) Could Vikings have navigated under foggy and cloudy conditions by skylight polarization? On the atmospheric optical prerequisites of polarimetric Viking navigation under foggy and cloudy skies. Proc R Soc A 463:1081–1095

    Google Scholar 

  • Hegedüs R, Barta A, Bernáth B, Meyer-Rochow VB, Horváth G (2007d) Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage. Appl Opt 46:6019–6032

    PubMed  Google Scholar 

  • Heinze S, Homberg U (2007) Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315:995–997

    PubMed  CAS  Google Scholar 

  • Heinze S, Homberg U (2008) Neuroarchitecture of the central complex of the desert locust: intrinsic and columnar neurons. J Comp Neurol 511:454–478

    PubMed  Google Scholar 

  • Heinze S, Homberg U (2009) Linking the input to the output: new sets of neurons complement the polarization vision network in the locust central complex. J Neurosci 29:4911–4921

    PubMed  CAS  Google Scholar 

  • Heinze S, Reppert SM (2011) Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69:345–358

    PubMed  CAS  Google Scholar 

  • Heinze S, Reppert SM (2012) Anatomical basis of sun compass navigation I: the general layout of the monarch butterfly brain. J Comp Neurol 520:1599–1628

    PubMed  Google Scholar 

  • Heinze S, Gotthardt S, Homberg U (2009) Transformation of polarized light information in the central complex of the locust. J Neurosci 29:11783–11793

    PubMed  CAS  Google Scholar 

  • Heinze S, Florman J, Asokaraj S, el Jundi B, Reppert SM (2013) Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly. J Comp Neurol 521:267–298

    PubMed  Google Scholar 

  • Helfrich-Forster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594

    PubMed  CAS  Google Scholar 

  • Henze MJ (2009) Two facets of insect vision: polarization sensitivity and visual pigments. PhD thesis, Universität Zürich, Zürich, Switzerland

    Google Scholar 

  • Henze MJ, Labhart T (2007) Haze, clouds and limited sky visibility: polarotactic orientation of crickets under difficult stimulus conditions. J Exp Biol 210:3266–3276

    PubMed  Google Scholar 

  • Henze MJ, Dannenhauer K, Kohler M, Labhart T, Gesemann M (2012) Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol Biol 12:163

    PubMed  CAS  PubMed Central  Google Scholar 

  • Herzmann D, Labhart T (1989) Spectral sensitivity and absolute threshold of polarization vision in crickets: a behavioral study. J Comp Physiol A 165:315–319

    Google Scholar 

  • Homberg U (1985) Interneurones of the central complex in the bee brain (Apis mellifera, L.). J Insect Physiol 31:251–264

    Google Scholar 

  • Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209

    PubMed  CAS  Google Scholar 

  • Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280

    PubMed  Google Scholar 

  • Homberg U, Würden S (1997) Movement-sensitive, polarization-sensitive, and light-sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 386:329–346

    PubMed  CAS  Google Scholar 

  • Homberg U, Würden S, Dircksen H, Rao K (1991) Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects. Cell Tissue Res 266:343–357

    Google Scholar 

  • Homberg U, Hofer S, Pfeiffer K, Gebhardt S (2003) Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J Comp Neurol 462:415–430

    PubMed  Google Scholar 

  • Homberg U, Heinze S, Pfeiffer K, Kinoshita M, el Jundi B (2011) Central neural coding of sky polarization in insects. Philos Trans R Soc Lond B 366:680–687

    Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, Heidelberg

    Google Scholar 

  • Horváth G, Wehner R (1999) Skylight polarization as perceived by desert ants and measured by video polarimetry. J Comp Physiol A 184:1–7 [Erratum 184: 347-349 (1999)]

    Google Scholar 

  • Horváth G, Barta A, Gál J, Suhai B, Haiman O (2002a) Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection. Appl Opt 41:543–559

    PubMed  Google Scholar 

  • Horváth G, Gál J, Labhart T, Wehner R (2002b) Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies. J Exp Biol 205:3281–3298

    PubMed  Google Scholar 

  • Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V et al (2014) A systematic nomenclature for the insect brain. Neuron 81(4):755–765

    PubMed  CAS  Google Scholar 

  • Iwano M, Hill ES, Mori A, Mishima T, Mishima T, Kei Ito K, Kanzaki R (2010) Neurons associated with the flip-flop activity in the lateral accessory lobe and ventral protocerebrum of the silkworm moth brain. J Comp Neurol 518:366–388

    PubMed  Google Scholar 

  • Kahsai L, Winther AME (2011) Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters. J Comp Neurol 519:290–315

    PubMed  CAS  Google Scholar 

  • Kahsai L, Martin J-R, Winther AME (2010) Neuropeptides in the Drosophila central complex in modulation of locomotor behavior. J Exp Biol 213:2256–2265

    PubMed  CAS  Google Scholar 

  • Kelber A (1999) Why “false” colours are seen by butterflies. Nature 402:251

    PubMed  CAS  Google Scholar 

  • Kelber A, Thunell C, Arikawa K (2001) Polarisation-dependent colour vision in Papilio butterflies. J Exp Biol 204:2469–2480

    PubMed  CAS  Google Scholar 

  • Kinoshita M, Pfeiffer K, Homberg U (2007) Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria. J Exp Biol 210:1350–1361

    PubMed  Google Scholar 

  • Kinoshita M, Yamazato K, Arikawa K (2011) Polarization-based brightness discrimination in the foraging butterfly, Papilio xuthus. Philos Trans R Soc Lond B 366:688–696

    Google Scholar 

  • Kirschfeld K (1972) The number of receptors necessary for determining the position of the E-vector of linearly polarized light. Z Naturforsch B 27:578–579

    PubMed  CAS  Google Scholar 

  • Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437

    Google Scholar 

  • Labhart T (1996) How polarization-sensitive interneurons of crickets perform at low degrees of polarization. J Exp Biol 199:1467–1475

    PubMed  Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    PubMed  CAS  Google Scholar 

  • Labhart T, Meyer EP (2002) Neural mechanisms in insect navigation: polarization compass and odometer. Curr Opin Neurobiol 12:707–714

    PubMed  CAS  Google Scholar 

  • Labhart T, Petzold J (1993) Processing of polarized light information in the visual system of crickets. In: Wiese K (ed) Sensory systems in arthropods. Birkhäuser, Basel, pp 158–169

    Google Scholar 

  • Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket’s compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155:289–296

    Google Scholar 

  • Labhart T, Petzold J, Helbling H (2001) Spatial integration in polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and benefits. J Exp Biol 204:2423–2430

    PubMed  CAS  Google Scholar 

  • Labhart T, Baumann F, Bernard GD (2009) Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta. Cell Tissue Res 338:391–400

    PubMed  PubMed Central  Google Scholar 

  • Lambert A, Furgale P, Barfoot TD, Enright J (2011) Visual odometry aided by a sun sensor and inclinometer. In: 2011 I.E. aerospace conference, 5–11 March 2011, Big Sky, MT, pp 1–14

    Google Scholar 

  • Li W, Pan Y, Wang Z, Gong H, Gong Z, Liu L (2009) Morphological characterization of single fan-shaped body neurons in Drosophila melanogaster. Cell Tissue Res 336:509–519

    PubMed  Google Scholar 

  • Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556

    PubMed  CAS  Google Scholar 

  • Mappes M, Homberg U (2004) Behavioral analysis of polarization vision in tethered flying locusts. J Comp Physiol A 190:61–68

    CAS  Google Scholar 

  • Mappes M, Homberg U (2007) Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria. J Comp Physiol A 193:43–50

    Google Scholar 

  • Merlin C, Gegear RJ, Reppert SM (2009) Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science 325:1700–1704

    PubMed  CAS  PubMed Central  Google Scholar 

  • Merlin C, Heinze S, Reppert SM (2012) Unraveling navigational strategies in migratory insects. Curr Opin Neurobiol 22:353–361

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mouritsen H, Frost BJ (2002) Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc Natl Acad Sci USA 99:10162–10166

    PubMed  CAS  PubMed Central  Google Scholar 

  • Müller M, Homberg U, Kühn A (1997) Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria). Cell Tissue Res 288:159–176

    PubMed  Google Scholar 

  • Nässel DR (1999) Histamine in the brain of insects: a review. Microsc Res Tech 44:121–136

    PubMed  Google Scholar 

  • Nässel DR, Homberg U (2006) Neuropeptides in interneurons of the insect brain. Cell Tissue Res 326:1–24

    PubMed  Google Scholar 

  • Pfeiffer K, Homberg U (2007) Coding of azimuthal directions via time-compensated combination of celestial compass cues. Curr Biol 17:960–965

    PubMed  CAS  Google Scholar 

  • Pfeiffer K, Kinoshita M, Homberg U (2005) Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. J Neurophys 94:3903–3915

    Google Scholar 

  • Pfeiffer K, Negrello M, Homberg U (2011) Conditional perception under stimulus ambiguity: polarization- and azimuth-sensitive neurons in the locust brain are inhibited by low degrees of polarization. J Neurophys 105:28–35

    Google Scholar 

  • Philipsborn A, Labhart T (1990) A behavioural study of polarization vision in the fly, Musca domestica. J Comp Physiol A 167:737–743

    Google Scholar 

  • Phillips-Portillo J (2012) The central complex of the flesh fly, Neobellieria bullata: recordings and morphologies of protocerebral inputs and small-field neurons. J Comp Neurol 520:3088–3104

    PubMed  PubMed Central  Google Scholar 

  • Pirih P, Arikawa K, Stavenga DG (2010) An expanded set of photoreceptors in the Eastern pale clouded yellow butterfly, Colias erate. J Comp Physiol A 196:501–517

    CAS  Google Scholar 

  • Pomozi I, Horváth G, Wehner R (2001) How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. J Exp Biol 204:2933–2942

    PubMed  CAS  Google Scholar 

  • Reppert SM (2006) A colorful model of the circadian clock. Cell 124:233–236

    PubMed  CAS  Google Scholar 

  • Reppert SM, Zhu H, White RH (2004) Polarized light helps monarch butterflies navigate. Curr Biol 14:155–158

    PubMed  CAS  Google Scholar 

  • Reppert SM, Gegear RJ, Merlin C (2010) Navigational mechanisms of migrating monarch butterflies. Trends Neurosci 33:399–406

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131

    Google Scholar 

  • Rossel S, Wehner R (1987) The bee’s E-vector compass. In: Menzel R, Mercer A (eds) Neurobiology and behaviour of honeybees. Springer, Heidelberg, pp 76–93

    Google Scholar 

  • Sakura M, Lambrinos D, Labhart T (2008) Polarized skylight navigation in insects: model and electrophysiology of E-vector coding by neurons in the central complex. J Neurophys 99:667–682

    Google Scholar 

  • Santschi F (1923) L’orientation siderale des fourmis, et quelques consideration sur leurs differentes possibilites d’orientation. Mem Soc Vaudoise Sci Nat 4:137–175

    Google Scholar 

  • Sauman I, Briscoe AD, Zhu H, Shi D, Froy O, Stalleicken J, Yuan Q, Casselman A, Reppert SM (2005) Connecting the navigational clock to sun compass input in monarch butterfly brain. Neuron 46:457–467

    PubMed  CAS  Google Scholar 

  • Schwind R (1983) Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notonecta glauca. Cell Tissue Res 232:53–63

    PubMed  CAS  Google Scholar 

  • Schwind R (1985) Sehen unter und über Wasser, Sehen von Wasser. Naturwissenschaften 72:343–352

    Google Scholar 

  • Schwind R, Horváth G (1993) Reflection-polarization pattern at water surfaces and correction of a common representation of the polarization pattern of the sky. Naturwissenschaften 80:82–83

    Google Scholar 

  • Shashar N, Sabbah S, Aharoni N (2005) Migrating locusts can detect polarized reflections to avoid flying over the sea. Biol Lett 1:472–475

    PubMed  CAS  PubMed Central  Google Scholar 

  • Siegl T, Schachtner J, Holstein GR, Homberg U (2009) NO/cGMP signalling: L-citrulline and cGMP immunostaining in the central complex of the desert locust Schistocerca gregaria. Cell Tissue Res 337:327–340

    PubMed  CAS  Google Scholar 

  • Stalleicken J, Mukhida M, Labhart T, Wehner R, Frost B, Mouritsen H (2005) Do monarch butterflies use polarized skylight for migratory orientation? J Exp Biol 208:2399–2408

    PubMed  Google Scholar 

  • Stalleicken J, Labhart T, Mouritsen H (2006) Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J Comp Physiol A 192:321–331

    Google Scholar 

  • Suhai B, Horváth G (2004) How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study. J Opt Soc Am A 21:1669–1676

    Google Scholar 

  • Träger U, Homberg U (2011) Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia. J Neurosci 31:2238–2247

    PubMed  Google Scholar 

  • Träger U, Wagner R, Bausenwein B, Homberg U (2008) A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain. J Comp Neurol 506:288–300

    PubMed  Google Scholar 

  • Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125

    PubMed  CAS  Google Scholar 

  • von Frisch K (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148

    PubMed  CAS  Google Scholar 

  • Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 145–186

    Google Scholar 

  • Wehner R, Bernard GD (1993) Photoreceptor twist: a solution to the false-color problem. Proc Natl Acad Sci USA 90:4132–4135

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wehner R, Labhart T (2006) Polarization vision. In: Warrant E, Nilsson DE (eds) Invertebrate vision. Cambridge University Press, Cambridge, UK, pp 291–348

    Google Scholar 

  • Weir PT, Dickinson MH (2012) Flying Drosophila orient to sky polarization. Curr Biol 22:21–27

    PubMed  CAS  Google Scholar 

  • Wernet MF, Desplan C (2004) Building a retinal mosaic: cell-fate decision in the fly eye. Trends Cell Biol 14:576–584

    PubMed  CAS  Google Scholar 

  • Wernet MF, Velez MM, Clark DA, Baumann-Klausener F, Brown JR, Klovstad M, Labhart T, Clandinin TR (2011) Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr Biol 21:1–9

    Google Scholar 

  • Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool 176:67–86

    Google Scholar 

  • Wolf R, Gebhardt B, Gademann R, Heisenberg M (1980) Polarization sensitivity of course control in Drosophila melanogaster. J Comp Physiol A 139:177–191

    Google Scholar 

  • Young JM, Armstrong J (2010) Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets. J Comp Neurol 518:1500–1524

    PubMed  CAS  Google Scholar 

  • Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert SM (2008) Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol 6:e4

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I am grateful to Basil el Jundi, Almut Kelber, and Gábor Horváth for valuable comments on earlier drafts of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Heinze .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 4.1

Different ways in which E-vector angles have been plotted for desert locusts and crickets. For crickets angles increase clockwise, while they increase counter-clockwise for locusts. To transform cricket angles into the locust system, one has to subtract them from 180°. Note that the locust system has also been adopted for the monarch butterfly (PNG 273 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinze, S. (2014). Polarized-Light Processing in Insect Brains: Recent Insights from the Desert Locust, the Monarch Butterfly, the Cricket, and the Fruit Fly. In: Horváth, G. (eds) Polarized Light and Polarization Vision in Animal Sciences. Springer Series in Vision Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54718-8_4

Download citation

Publish with us

Policies and ethics