Skip to main content

The Ecology of Polarisation Vision in Birds

  • Chapter
  • First Online:
Polarized Light and Polarization Vision in Animal Sciences

Part of the book series: Springer Series in Vision Research ((SSVR,volume 2))

Abstract

Birds have evolved a mobile lifestyle in which vision is of major importance when controlling movements, avoiding predators, finding food and selecting mates. Birds have extraordinary colour vision and have been suggested to perceive the linear polarisation of light. Behavioural experiments support this idea, but still the exact physiological mechanism involved is not known. The twilight period, when the sun is near the horizon at sunrise and sunset, is of crucial importance for migrating birds. At this time millions of songbirds initiate migration when the degree of skylight polarisation is the highest and all compass cues are visible in a short range of time. The biological compasses are based on information from the stars, the sun and the related pattern of skylight polarisation, as well as the geomagnetic field, and may be recalibrated relative to each other. The celestial polarisation pattern near the horizon has been shown to be used in the recalibration of the magnetic compass, but conflicting results have been obtained in experiments with different bird species. For the future we should understand the physiological mechanisms of avian polarisation vision and investigate the interrelationship and calibrations between the different compasses, including the one based on the pattern of skylight polarisation. A conditioning paradigm may be fruitful, but the risk of introducing optical artefacts needs to be minimised in behavioural experiments, as well as in cage experiments with migratory birds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Able KP (1982) Skylight polarization patterns at dusk influence migratory orientation in birds. Nature 299:550–551

    Article  Google Scholar 

  • Able KP (1989) Skylight polarization patterns and the orientation of migratory birds. J Exp Biol 141:241–256

    Google Scholar 

  • Able KP, Able MA (1990) Ontogeny of migratory orientation in the Savannah sparrow, Passerculus sandwichensis: calibration of the magnetic compass. Anim Behav 39:905–913

    Article  Google Scholar 

  • Able KP, Able MA (1993) Daytime calibration of magnetic orientation in a migratory bird requires a view of skylight polarization. Nature 364:523–525

    Article  Google Scholar 

  • Able KP, Able MA (1995) Interactions in the flexible orientation system of a migratory bird. Nature 375:230–232

    Article  CAS  Google Scholar 

  • Åkesson S (1994) Comparative orientation experiments with different species of long-distance migrants: effect of magnetic field manipulation. Anim Behav 48:1379–1393

    Article  Google Scholar 

  • Åkesson S, Hedenström A (2000) Selective flight departure in passerine nocturnal migrants. Behav Ecol Sociobiol 47:140–144

    Article  Google Scholar 

  • Åkesson S, Hedenström A (2007) How migrants get there: migratory performance and orientation. Bioscience 57:123–133

    Article  Google Scholar 

  • Åkesson S, Alerstam T, Hedenström A (1996) Flight initiation of nocturnal passerine migrants in relation to celestial orientation conditions at twilight. J Avian Biol 27:95–102

    Article  Google Scholar 

  • Åkesson S, Walinder G, Karlsson L, Ehnbom S (2001) Reed warbler orientation: Initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk. Anim Behav 61:181–189

    Article  PubMed  Google Scholar 

  • Åkesson S, Morin J, Muheim R, Ottosson U (2002) Avian orientation: effects of cue-conflict experiments with young migratory songbirds in the high Arctic. Anim Behav 64:469–475

    Article  Google Scholar 

  • Åkesson S, Klaassen R, Holmgren J, Fox JW, Hedenström A (2012) Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators. PLoS One 7(7):e41195

    Article  PubMed  PubMed Central  Google Scholar 

  • Alerstam T, Gudmundsson GA, Green M, Hedenström A (2001) Migration along orthodromic sun compass routes by arctic birds. Science 291:300–303

    Article  PubMed  CAS  Google Scholar 

  • Andersson S, Amundsen T (1997) Ultraviolet colour vision and ornamentation in bluethroats. Proc R Soc Lond B 264:1587–1591

    Article  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic, New York

    Google Scholar 

  • Baylor ER, Fettiplace D (1975) Light path and photon capture in turtle photoreceptors. J Physiol 248:433–464

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beason RC (1992) You can get there from here: responses to simulated magnetic equator crossing by the Bobolink (Dolichonyx oryzivorus). Ethology 91:75–80

    Article  Google Scholar 

  • Beason RC, Loew ER (2008) Visual pigment and oil droplet characteristics of the bobolink (Dolichonyx oryzivorus), a new world migratory bird. Vis Res 48:1–8

    Article  PubMed  Google Scholar 

  • Bennett ATD, Cuthill IC (1994) Ultraviolet vision in birds: what is its function? Vis Res 34:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK (1977) The visual pigments, oil droplets and spectral sensitivity of the pigeon. Vis Res 17:1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK (1980) Colour vision in birds and the role of oil droplets. Trends Neurosci 3:196–199

    Article  Google Scholar 

  • Bowmaker JK (1991) Photoreceptors, photopigments and oil droplets. In: Gouras P (ed) Vision and visual dysfunction, vol 6, The perception of colour. Macmillan, London, pp 108–127

    Google Scholar 

  • Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vis Res 48:2022–2041

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK, Heath LA, Wilkie SE, Hunt DM (1997) Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vis Res 37:2183–2194

    Article  PubMed  CAS  Google Scholar 

  • Brines M, Gould J (1982) Skylight polarization patterns and animal orientation. J Exp Biol 96:69–91

    Google Scholar 

  • Bruderer B, Weitnauer E (1972) Radarbeobachtungen über Zug und Nachtflüge des Mauerseglers (Apus apus). Rev Suisse Zool 79:1190–1200

    PubMed  CAS  Google Scholar 

  • Burkhardt D (1982) Birds, berries and UV. Naturwissenschaften 69:153–157

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt D, Maier EJ (1989) The spectral sensitivity of a Passerine bird is highest in the UV. Naturwissenschaften 76:82–83

    Article  Google Scholar 

  • Burton RF (2008) The scaling of eye size in adult birds: relationship to brain, head and body sizes. Vis Res 48:2345–2351

    Article  PubMed  Google Scholar 

  • Cameron DA, Pugh EN (1991) Double cones as a basis for a new type of polarisation vision in vertebrates. Nature 353:161–164

    Article  PubMed  CAS  Google Scholar 

  • Chen DM, Goldsmith TH (1986) Four spectral classes of cone in the retinas of birds. J Comp Physiol A 159:473–479

    Article  PubMed  CAS  Google Scholar 

  • Chen DM, Collins JS, Goldsmith TH (1984) The ultraviolet receptor of bird retinas. Science 225:337–340

    Article  PubMed  CAS  Google Scholar 

  • Church SC, Bennett AT, Cuthill IC, Partridge JC (1998) Ultraviolet cues affect the foraging behaviour of blue tits. Proc R Soc Lond B 265:1509–1514

    Article  Google Scholar 

  • Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408

    Article  PubMed  CAS  Google Scholar 

  • Coemans MAJM, Vos Hzn JJ, Nuboer JFW (1990) No evidence for polarization sensitivity in the pigeon. Naturwissenschaften 77:138–142

    Article  PubMed  CAS  Google Scholar 

  • Coemans MAJM, Vos Hzn JJ, Nuboer JFW (1994) The orientation of the e-vector of linearly polarized light does not affect the behaviour of the pigeon, Columba livia. J Exp Biol 191:107–123

    PubMed  Google Scholar 

  • Cronin TW, Warrant EJ, Greiner B (2006) Celestial polarization patterns during twilight. Appl Opt 45:5582–5589

    Article  PubMed  Google Scholar 

  • de Brooke ML, Hanley S, Laughlin SB (1999) The scaling of eye size with body mass in birds. Proc R Soc B 266:405–412

    Article  PubMed Central  Google Scholar 

  • Delius JD, Perchard RJ, Emmerton J (1976) Polarized light discrimination by pigeons and an electroretinographic correlate. J Comp Physiol Psychol 90:560–571

    Article  PubMed  CAS  Google Scholar 

  • Dokter AM, Åkesson S, Beekhuis H, Bouten W, Buurma L, van Gasteren H, Holleman I (2013) Twilight ascents by common swifts, Apus apus, at dawn and dusk: acquisition of orientation cues? Anim Behav 85:545–552

    Article  Google Scholar 

  • Emlen ST (1967a) Migratory orientation in the indigo bunting, Passerina cyanea. Part II: mechanism of celestial orientation. Auk 84:463–489

    Article  Google Scholar 

  • Emlen ST (1967b) Migratory orientation in the indigo bunting, Passerina cyanea. Part I: evidence for use of celestial cues. Auk 84:309–342

    Article  Google Scholar 

  • Emlen ST (1970) Celestial rotation: its importance in the development of migratory orientation. Science 170:1198–1201

    Article  PubMed  CAS  Google Scholar 

  • Emlen ST (1975) Migration: orientation and navigation. Avian Biol 5:129–219

    Article  Google Scholar 

  • Emmerton J, Delius JD (1980) Wavelength discrimination in the “visible” and UV spectrum by pigeons. J Comp Physiol A 141:47–52

    Article  Google Scholar 

  • Finger E, Burkhardt D (1994) Biological aspects of bird colouration and avian colour vision including ultraviolet range. Vis Res 34:1509–1514

    Article  PubMed  CAS  Google Scholar 

  • Gaggini V, Baldaccini N, Spina F, Giunchi D (2010) Orientation of the pied flycatcher Ficedula hypoleuca cue-conflict experiments during spring migration. Behav Ecol Sociobiol 64:1333–1342

    Article  Google Scholar 

  • Goldsmith TH (1991) Optimization, constraint and history in the evolution of eyes. Q Rev Biol 65:281–322

    Article  Google Scholar 

  • Goldsmith TH, Collins JS, Licht S (1984) The cone oil droplets of avian retinas. Vis Res 24:1661–1671

    Article  PubMed  CAS  Google Scholar 

  • Greenwood VJ, Smith EL, Church SC, Partridge JC (2003) Behavioural investigation of polarisation sensitivity in the Japanese quail (Coturnix coturnix japonica) and the European starling (Sturnus vulgaris). J Exp Biol 206:3201–3210

    Article  PubMed  Google Scholar 

  • Gudmundsson GA, Alerstam T, Benvenuti S, Papi F, Lilliendahl K, Åkesson S (1995) Examining the limits of flight and orientation performance: satellite tracking of brent geese migrating across the Greenland ice-cap. Proc R Soc Lond B 261:73–79

    Article  Google Scholar 

  • Haan S, Bauer S, Liechti F (2009) The natural link between Europe and Africa—2.1 billion birds on migration. Oikos 118:624–626

    Article  Google Scholar 

  • Hárosi FI, MacNichol EF Jr (1974) Visual pigments of goldfish cones: spectral properties and dichroism. J Gen Physiol 63:279–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC (1998) Visual pigments, oil droplets and cone photoreceptor distribution in the European starling (Sturnus vulgaris). J Exp Biol 201:1433–1446

    PubMed  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC (1999) Visual pigments, cone oil droplets, ocular media and predicted spectral sensitivity in the domestic turkey (Meleagris gallopavo). Vis Res 39:3321–3328

    Article  PubMed  CAS  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC, Bennett AT (2000) Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). J Comp Physiol A 186:375–387

    Article  PubMed  CAS  Google Scholar 

  • Hegedüs R, Åkesson S, Wehner R, Horváth G (2007a) Could Vikings have navigated under foggy and cloudy conditions by skylight polarization? On the atmospheric optical prerequisites of polarimetric Viking navigation under foggy and cloudy skies. Proc R Soc A 463:1081–1095

    Article  Google Scholar 

  • Hegedüs R, Åkesson S, Horváth G (2007b) Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies. J Opt Soc Am A 24:2347–2356

    Article  Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision: polarization patterns in nature. Springer, Heidelberg

    Book  Google Scholar 

  • Hunt S, Bennett AT, Cuthill IC, Griffiths R (1998) Blue tits are ultraviolet tits. Proc R Soc Lond B 265:451–455

    Article  Google Scholar 

  • Kreithen ML, Keeton WT (1974) Detection of polarized light by the homing pigeon, Columba livia. J Comp Physiol A 89:83–92

    Article  Google Scholar 

  • Lisney TJ, Rubene D, Rózsa J, Lovlie H, Håstad O, Ödeen A (2011) Behavioural assessment of flicker fusion frequency in chicken Gallus gallus domesticus. Vis Res 51:1324–1332

    Article  PubMed  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Oxford University Press, Oxford

    Google Scholar 

  • Maier EJ (1992) Spectral sensitivities including the UV of the passeriform bird Leiothrix lutea. J Comp Physiol A 170:709–714

    Article  Google Scholar 

  • Maier EJ, Bowmaker JK (1993) Colour vision in the passeriform bird, Leiothrix lutea: correlation of visual pigment absorbance and oil droplet transmission with spectral sensitivity. J Comp Physiol A 172:295–301

    Article  Google Scholar 

  • Martin GR (1985) Eye. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic, London, pp 311–373

    Google Scholar 

  • Montgomery KC, Heinemann EG (1952) Concerning the ability of homing pigeons to discriminate patterns of polarized light. Science 116:454–456

    Article  PubMed  CAS  Google Scholar 

  • Moore FR (1987) Sunset and the orientation behaviour of migrating birds. Biol Rev 62:65–86

    Article  Google Scholar 

  • Mouritsen H, Hore P (2012) The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds. Curr Opin Neurobiol 22:343–352

    Article  PubMed  CAS  Google Scholar 

  • Muheim R (2011) Behavioural and physiological mechanisms of polarized light sensitivity in birds. Philos Trans R Soc B 366:763–771

    Article  Google Scholar 

  • Muheim R, Moore FR, Phillips JB (2006a) Calibration of magnetic and celestial compass cues in migratory birds: a review of cue-conflict experiments. J Exp Biol 209:2–17

    Article  PubMed  Google Scholar 

  • Muheim R, Phillips JB, Åkesson S (2006b) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839

    Article  PubMed  CAS  Google Scholar 

  • Muheim R, Åkesson S, Phillips JB (2007) Magnetic compass of migratory Savannah sparrows is calibrated by skylight polarization at sunrise and sunset. J Ornithol 148:485–494

    Article  Google Scholar 

  • Muheim R, Åkesson S, Phillips JB (2008) Response to R. Wiltschko et al. (Journal für Ornithologie): contradictory results on the role of polarized light in compass calibration in migratory songbirds. J Ornithol 149:659–662

    Article  Google Scholar 

  • Muheim R, Phillips JB, Deutschlander ME (2009) White-throated sparrows calibrate their magnetic compass by polarized light cues during both autumn and spring migration. J Exp Biol 212:3466–3472

    Article  PubMed  Google Scholar 

  • Muntz WRA (1972) Inert absorbing and reflecting, pigments. In: Dartnall HJA (ed) The handbook of sensory physiology, vol WII/l. Springer, Berlin, pp 529–565

    Google Scholar 

  • Niessner C, Denzau S, Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R (2011) Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS One 6:e20091

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palmgren P (1949) On the diurnal rhythm of activity and rest in birds. Ibis 91:561–576

    Article  Google Scholar 

  • Partridge JC (1989) The visual ecology of avian cone oil droplets. J Comp Physiol A 165:415–426

    Article  Google Scholar 

  • Rozenberg GV (1966) Twilight. A study in atmospheric optics. Plenum, New York

    Google Scholar 

  • Schmaljohann H, Rautenberg T, Muheim R, Naef-Daenzer B, Bairlein F (2013) Response of a free-flying songbird to an experimental shift of the light polarization pattern around sunset. J Exp Biol 216:1381–1387

    Article  PubMed  Google Scholar 

  • Schmidt-Koenig K (1990) The sun compass. Experientia 46:336–342

    Article  Google Scholar 

  • Tarburton MK, Kaiser E (2001) Do fledgling and pre-breeding common swifts Apus apus take part in aerial roosting? An answer from a radiotracking experiment. Ibis 143:255–264

    Article  Google Scholar 

  • von Frisch K (1949) Die Polarisation des Himmelslichtes als orienterender Faktor bei den Tänzen der Bienen. Experientia 5:142–148

    Article  PubMed  CAS  Google Scholar 

  • Vos HJJ, Coemans M, Nuboer J (1995) No evidence for polarization sensitivity in the pigeon electroretinogram. J Exp Biol 198:325–335

    Google Scholar 

  • Wald G, Zussman H (1937) Carotenoids of the chicken retina. Nature 140:197

    Article  CAS  Google Scholar 

  • Wehner R (1989) Neurobiology of polarization vision. Trends Neurosci 12:353–359

    Article  PubMed  CAS  Google Scholar 

  • Weindler P, Wiltschko R, Wiltschko W (1996) Magnetic information affects the stellar orientation of young bird migrants. Nature 383:158–160

    Article  CAS  Google Scholar 

  • Weitnauer E (1952) Übernachtet der Mauersegler, Apus apus (L.), in der Luft? Ornithologische Beobachtungen 49:37–44

    Google Scholar 

  • Willis J, Phillips J, Muheim R, Diego-Rasilla FJ, Hobday AJ (2009) Spike dives of juvenile southern bluefin tuna (Thunnus maccoyii): a navigational role? Behav Ecol Sociobiol 64:57–68

    Article  Google Scholar 

  • Wiltschko R (1980) Die Sonnenorientierung der Vögel. 1. Die Rolle der Sonne im Orientierungssystem und die Funktionsweise des Sonnenkompass. J Ornithol 121:121–143

    Article  Google Scholar 

  • Wiltschko R (1981) Die Sonnenorientierung der Vögel. 2. Entwicklung des Sonnenkompass und sein Stellenwert im Orientierungssystem. J Ornithol 122:1–22

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R (1992) Migratory orientation: magnetic compass orientation of garden warblers, Sylvia borin, after a simulated crossing of the magnetic equator. Ethology 91:70–74

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, Heidelberg

    Book  Google Scholar 

  • Wiltschko R, Wiltschko W (2010) Avian magnetic compass: its functional properties and physical basis. Curr Zool 56:265–276

    Google Scholar 

  • Wiltschko R, Walker M, Wiltschko W (2000) Sun-compass orientation in homing pigeons: compensation for different rates of change in azimuth? J Exp Biol 203:889–894

    PubMed  CAS  Google Scholar 

  • Wiltschko R, Munro U, Ford H, Wiltschko W (2008) Contradictory results on the role of polarized light in compass calibration in migratory songbirds. J Ornithol 149:607–614

    Article  Google Scholar 

  • Young SR, Martin GR (1984) Optics of retinal oil droplets: a model of light collection and polarization detection in the avian retina. Vis Res 24:129–137

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Åkesson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Åkesson, S. (2014). The Ecology of Polarisation Vision in Birds. In: Horváth, G. (eds) Polarized Light and Polarization Vision in Animal Sciences. Springer Series in Vision Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54718-8_12

Download citation

Publish with us

Policies and ethics