Skip to main content

Polarization Sensitivity in Reptiles

  • Chapter
  • First Online:

Part of the book series: Springer Series in Vision Research ((SSVR,volume 2))

Abstract

Somewhat questionable evidence in support of reptilian polarization sensitivity (PS) has come from field and laboratory observations on the behaviour of a few species of marine and freshwater turtles. More convincing are conclusions based on PS-aided orientation in the lizards Uma notata, Tiliqua rugosa and Podarcis sicula. It is suggested that submersed hunters like, for instance, sea snakes ought to be included in examinations for PS since contrast enhancement by PS under water could bestow some benefits to them during food procurement. Courtship displays in certain species of lizards could also contain signals for which the presence of PS would be advantageous, but as yet polarization signals have not been demonstrated in any species. Results based on electrophysiological recordings to demonstrate PS in photoreceptors of the lateral eyes or pineal organs are scant and a connection between PS and magnetoreception is regarded as likely.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler K, Phillips JB (1985) Orientation in a desert lizard (Uma notata): time-compensated compass movement and polarotaxis. J Comp Physiol A 156:547–552

    Article  Google Scholar 

  • Ammermüller J, Kolb H (1996) Functional architecture of the turtle retina. Prog Retin Eye Res 15:393–433

    Article  Google Scholar 

  • Avens L, Lohmann KJ (2003) Use of multiple orientation cues by juvenile loggerhead sea turtles (Caretta caretta). J Exp Biol 206:4317–4325

    Article  PubMed  Google Scholar 

  • Bajer K, Molnár O, Török J, Herczeg G (2011) Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). Biol Lett 7:866–868

    Article  PubMed  PubMed Central  Google Scholar 

  • Beltrani G, Bertolucci C, Parretta A, Petrucci F, Foa A (2010) A sky polarization compass in lizards: the central role of the parietal eye. J Exp Biol 213:2048–2054

    Article  Google Scholar 

  • Beltrani G, Parretta A, Petrucci F, Buttini P, Bertolucci C, Foa A (2012) The lizard celestial compass detects linearly polarized light in the blue. J Exp Biol 215:3200–3206

    Article  Google Scholar 

  • Chelazzi G (1992) Reptiles. In: Papi F (ed) Animal homing. Chapman and Hall, London, pp 235–255

    Chapter  Google Scholar 

  • Ehrenfeld DW (1968) The role of vision in the sea-finding orientation of the green turtle (Chelonia mydas). 2. Orientation mechanism and range of spectral sensitivity. Anim Behav 16:281–287

    Article  PubMed  CAS  Google Scholar 

  • Ehrenfeld DW, Carr A (1967) The role of vision in the sea-finding orientation of the green turtle (Chelonia mydas). Anim Behav 15:25–36

    Article  PubMed  CAS  Google Scholar 

  • Ellingson JM, Fleishman LJ, Loew ER (1995) Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis. J Comp Physiol A 177:559–567

    Article  PubMed  CAS  Google Scholar 

  • Ellis-Quinn BA, Simon CA (1991) Lizard homing behaviour: the role of the parietal eye during displacement and radio-tracking, and time-compensated celestial orientation in the lizard Sceloporus jarrovi. Behav Ecol Sociobiol 28:397–407

    Article  Google Scholar 

  • Emlen ST (1969) Homing ability and orientation in the painted turtle, Chrysemys picta marginata. Behaviour 33:58–76

    Article  Google Scholar 

  • Foa A, Basaglia F, Beltrani G, Carnacina M, Moretto E, Bertolucci C (2009) Orientation of lizards in a Morris water-maze: roles of the sun compass and the parietal eye. J Exp Biol 212:2918–2994

    Article  PubMed  Google Scholar 

  • Freake MJ (1999) Homing behaviour in the sleepy lizard (Tiliqua rugosa): the role of visual cues and the parietal eye. Behav Ecol Sociobiol 50:563–569

    Google Scholar 

  • Graham T, Georges A, Mc Elhinney N (1996) Terrestrial orientation in the eastern long-necked turtle, Chelodina longicollis, from Australia. J Herpetol 30:467–477

    Article  Google Scholar 

  • Hillenius WJ, Rehorek SJ (2005) From the eye to the nose: ancient orbital to vomeronasal communication in tetrapods? Chem Signal Vert 10:228–241

    Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, Heidelberg

    Book  Google Scholar 

  • Kolb H, Jonas J (1987) The distinction by light and electron microscopy of two types of cone containing oil droplets in the retina of the turtle. Vis Res 27:1445–1458

    Article  PubMed  CAS  Google Scholar 

  • Lawson PA, Secoy DM (1991) The use of solar cues as migratory orientation guides by the plains garter snake, Thamnophis radix. Can J Zool 69:2700–2702

    Article  Google Scholar 

  • Lin S, Yemelyanov KM (2006) Separation and contrast enhancement of overlapping cast shadow components using polarization. Opt Express 14:7099–7107

    Article  PubMed  Google Scholar 

  • Loew ER, Govardovskii VI, Röhlich P, Szel A (1996) Microspectrophotometric and immunocytochemical identification of ultraviolet photoreceptors in geckos. Vis Neurosci 13:247–256

    Article  PubMed  CAS  Google Scholar 

  • Lohmann KJ, Witherington BE, Lohmann CMF, Salmon M (1996) Orientation, navigation, and natal beach homing in sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 107–136

    Google Scholar 

  • Mäthger LM, Lohmann KJ, Limpus CJ, Fritsches KA (2011) An unsuccessful attempt to elicit orientation responses to linearly polarized light in hatchling loggerhead sea turtles (Caretta caretta). Philos Trans R Soc Lond B 366:757–762

    Article  Google Scholar 

  • Mathis A, Moore FR (1988) Geomagnetism and the homeward orientation of the box turtle, Terrapene carolina. Ethology 78:265–274

    Article  Google Scholar 

  • Mehrtens JM (1987) Living snakes of the world in color. Sterling, New York

    Google Scholar 

  • Meyer-Rochow VB (1989) Behaviour of young tuatara (Sphenodon punctatus) in total darkness. Tuatara 30:36–38

    Google Scholar 

  • Meyer-Rochow VB (2014) Polarization sensitivity in amphibians. In: Horváth G (ed) Polarized light and polarization vision in animal sciences. Springer Series in Vision Research (eds: S. Collin, J. Marshall). Springer, Heidelberg, Chapter 10

    Google Scholar 

  • Meyer-Rochow VB, The KL (1991) Visual predation by tuatara (Sphenodon punctatus) on the beach beetle (Chaerodes trachyscelides) as a selective force in the production of distinct colour morphs. Tuatara 31:1–8

    Google Scholar 

  • Meyer-Rochow VB, Wohlfahrt S, Ahnelt PK (2005) Photoreceptor cell types in the retina of the tuatara (Sphenodon punctatus) have cone characteristics. Micron 36:423–428

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka T (1985) Spectral sensitivities of seven morphological types of photoreceptors in the retina of the turtle, Geoclemys reevesii. J Comp Neurol 237:145–154

    Article  PubMed  CAS  Google Scholar 

  • Ouboter PE, Nanhoe LM (1988) Habitat selection and migration of Caiman crocodiles in a swamp and swamp-forest habitat in northern Suriname. J Herpetol 22:283–294

    Article  Google Scholar 

  • Pough HF, Janis CM, Heiser JB (2002) Vertebrate life. Prentice Hall, New Jersey

    Google Scholar 

  • Rodda GH (1984) The orientation and navigation of juvenile alligators: evidence of magnetic sensitivity. J Comp Physiol A 154:649–658

    Article  Google Scholar 

  • Rodda GH (1985) Navigation in juvenile alligators. Z Tierpsychol 68:65–77

    Article  Google Scholar 

  • Russell AP, Bauer AM, Johnson MK (2005) Migration in amphibians and reptiles. In: Bewa AMT (ed) Migration of organisms: climate, geography, ecology. Springer, Heidelberg, pp 151–203

    Chapter  Google Scholar 

  • Sabbah S, Lerner A, Erlick C, Shashar N (2005) Underwater polarization vision—a physical examination. Recent Res Dev Exp Theor Biol 1:123–176

    Google Scholar 

  • Sillman AJ, Ronan SJ, Loew ER (1991) Histology and microspectrophotometry of the photoreceptors of a crocodilian, Alligator mississippiensis. Proc R Soc Lond B 243:93–98

    Article  Google Scholar 

  • Sillman AJ, Govardovskii VI, Röhlich P, Southard JA, Loew ER (1997) The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): a microspectrophotometric, scanning electron microscopic and immunocytochemical study. J Comp Physiol A 181:89–101

    Article  PubMed  CAS  Google Scholar 

  • Sokol S, Muntz WRA (1966) The spectral sensitivity of the turtle Chrysemys picta picta. Vis Res 6:285–292

    Article  Google Scholar 

  • Solessio E, Engbretson GA (1999) Electroretinogram of the parietal eye of lizards: photoreceptor, glial, and lens cell contributions. Vis Neurosci 16:895–907

    Article  PubMed  CAS  Google Scholar 

  • Southwood A, Avens L (2010) Physiological, behavioral, and ecological aspects of migration in reptiles. J Comp Physiol A 180:1–23

    Article  Google Scholar 

  • Tosini G, Avery RA (1996) Dermal photoreceptors regulate basking behavior in the lizard Podarcis muralis. Physiol Behav 59:195–198

    Article  PubMed  CAS  Google Scholar 

  • Ung CY, Molteno AC (2004) An enigmatic eye: the histology of the tuatara pineal complex. Clin Exp Ophthalmol 32:614–618

    Article  Google Scholar 

  • Ventura DF, DeSouza JN, Devoe RD, Zana Y (1999) UV responses in the retina of the turtle. Vis Neurosci 16:191–204

    Article  PubMed  CAS  Google Scholar 

  • Vercken E, Sinervo B, Clobert J (2008) Colour variation in female common lizards: why we should speak of morphs, a reply to Cote et al. J Evol Biol 21:1160–1164

    Article  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Crembrook, Bloomfield Hills

    Book  Google Scholar 

  • Wiltschko W, Wiltschko R (1995) Magnetic orientation in animals. Springer, Heidelberg

    Book  Google Scholar 

  • Yeomans RS (1995) Water-finding in adult turtles: random search or oriented behaviour. Anim Behav 49:977–987

    Article  Google Scholar 

  • Zug JR, Vitt LJ, Caldwell JP (2001) Herpetology. Academic, San Diego, CA

    Google Scholar 

Download references

Acknowledgements

I wish to thank Prof. Hong Yang Yan (Taiwan National Academy of Science) for valuable hints on relevant literature and Jacobs University Bremen for the support I received while on sabbatical. I am grateful to Dr. Peter Stoeckl (Vienna, Austria) for having made available the photograph in Fig. 11.1, and I thank Professor G. Horváth for having invited me to contribute to this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Benno Meyer-Rochow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer-Rochow, V.B. (2014). Polarization Sensitivity in Reptiles. In: Horváth, G. (eds) Polarized Light and Polarization Vision in Animal Sciences. Springer Series in Vision Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54718-8_11

Download citation

Publish with us

Policies and ethics