Skip to main content

Polarization Sensitivity in Amphibians

  • Chapter
  • First Online:

Part of the book series: Springer Series in Vision Research ((SSVR,volume 2))

Abstract

Polarization sensitivity (PS) in amphibians has been examined in some species of anurans and urodelans. Gymnophiones, on account of their tiny eyes and fossorial or aquatic lifestyles, are considered unlikely candidates for PS. Some anura and urodela have been shown to detect the direction of polarization with photoreceptors of the pineal organ rather than their lateral eyes. An ordered array of light-absorbing visual molecules is paramount for PS, but an ordered array of radical pairs generated through photo-induced electron transfer is also essential for magnetoreception, which suggests that there is some interaction between the two senses. An anatomical requirement for PS is a constant and characteristic orientation of the photoreceptor’s disc membranes. A closer look at ultrastructural modifications in different retinal regions of species deemed polarization sensitive seems warranted. Polarization sensitivity may help to relocate breeding sites in philotropic species and to improve visibility of prey in predatory larval and adult urodeles plus those few anurans that hunt under water. Furthermore, it could possibly be of assistance in separating overlapping shadows and play a role during courtship in species with distinct sexually dimorphic colouration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler K, Taylor DH (1973) Extraocular perception of polarized light by orienting salamanders. J Comp Physiol 87:203–212

    Article  Google Scholar 

  • Auburn JS, Taylor DH (1979) Polarized light perception and orientation in larval bullfrogs Rana catesbeiana. Anim Behav 27:658–668

    Article  Google Scholar 

  • Badenhorst A (1978) The development and the phylogeny of the organ of Jacobson and the tentacular apparatus of Ichthyophis glutinosus (Linne). Ann Univ Stellenbosch Ser 2AI:1–26

    Google Scholar 

  • Callery EM, Fang H, Elinson RP (2001) Frogs without polliwogs: evolution of anuran direct development. BioEssays 23:233–241

    Article  PubMed  CAS  Google Scholar 

  • Channing A, Howell KM (2006) Amphibians of East Africa. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Corless JM (1986) A minimum diameter limit for retinal rod outer segment disks. In: Sheffield JB, Hilfer SR (eds) Development of order in the visual system. Springer, Heidelberg, pp 127–142

    Chapter  Google Scholar 

  • Daneri MF, Casaneve E (2011) Control of spatial orientation in terrestrial toads (Rhinella arenarum). J Comp Psychol 125:296–307

    Article  PubMed  Google Scholar 

  • Daniolos A, Lerner AB, Lerner MR (1990) Action of light on frog pigment cells in culture. Pigment Cell Res 3:38–43

    Article  PubMed  CAS  Google Scholar 

  • Demian JJ, Taylor DH (1977) Photoreception and locomotor rhythm entrainment by the pineal body of the newt Notophthalmus viridescens (Amphibia, Urodela, Salamandridae). J Herpetol 11:131–139

    Article  Google Scholar 

  • Deutschlander ME, Phillips JB (1995) Characterization of an ultraviolet photoreception mechanism in the retina of an amphibian, the axolotl (Ambystoma mexicanum). Neurosci Lett 197:93–96

    Article  PubMed  CAS  Google Scholar 

  • Durand J (1976) Ocular development and involution in the European cave salamander Proteus anguinus Laurenti. Biol Bull 151:450–466

    Article  PubMed  CAS  Google Scholar 

  • Edmonds DT (1996) A sensitive optically-detected magnetic compass for animals. Proc R Soc Lond B 263:295–298

    Article  CAS  Google Scholar 

  • Ekström P, Meissl H (1997) The pineal organ of teleost fishes. Rev Fish Biol Fisher 7:199–284

    Article  Google Scholar 

  • Ferguson DE (1971) The sensory basis of orientation in amphibians. Ann N Y Acad Sci 188:30–36

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DE, Landreth HF (1966) Celestial orientation of Fowler’s toad, Bufo fowleri. Behaviour 26:105–123

    Article  Google Scholar 

  • Ferguson DE, McKeown JB, Bosarge OS, Landreth HF (1968) Sun-compass orientation of bullfrogs. Copeia 1968:230–235

    Article  Google Scholar 

  • Flamarique IN, Browman MI (2001) Foraging and prey-searching behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light. J Exp Biol 204:2415–2422

    PubMed  CAS  Google Scholar 

  • Flamarique IN, Hawryshyn CW (1998) Photoreceptor types and their relation to the spectral and polarization sensitivities of clupeid fishes. J Comp Physiol A 182:793–803

    Article  Google Scholar 

  • Foley EL, Gegear RJ, Reppert SM (2011) Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun 2:356. doi:10.1038/ncomms1364

    Article  PubMed  PubMed Central  Google Scholar 

  • Greven H (2003) Larviparity and pueriparity. In: Sever DM (ed) Reproductive biology and phlogeny of urodela. Science Publications, Enfield, Plymouth, pp 447–475

    Google Scholar 

  • Greven H, Richter S (2009) Morphology of skin incubation in Pipa carvalhoi (Anura; Pipidae). J Morphol 270:1311–1319

    Article  PubMed  Google Scholar 

  • Hairston NGS (1994) Vertebrate zoology: an experimental field approach. Cambridge University Press, Cambridge

    Google Scholar 

  • Hárosi FI (1975) Absorption spectra and linear dichroism of some amphibian photoreceptors. J Gen Physiol 66:357–382

    Article  PubMed  Google Scholar 

  • Hershey JL, Forester DC (1980) Sensory orientation in Notophthalmus v. viridescens (Amphibia; Salamandridae). Can J Zool 58:266–276

    Article  Google Scholar 

  • Himstedt W (1972) Untersuchungen zum Farbensehen von Urodelen. J Comp Physiol 81:229–238

    Article  Google Scholar 

  • Himstedt W (1979) The significance of color in partner recognition of the newt Triturus alpestris. Copeia 1979:43–47

    Article  Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, Heidelberg

    Book  Google Scholar 

  • Justin CS, Taylor DH (1976) Extraocular photoreception and compass orientation in larval bullfrogs Rana catesbeiana. Copeia 1976:98–105

    Article  Google Scholar 

  • King JR, Conner CM (1996) Visually elicited turning behavior in Rana pipiens: comparative organization and neural control of escape and prey capture. J Comp Physiol A 178:293–305

    Article  Google Scholar 

  • Koskelainen A, Hemilä S, Donner K (1994) Spectral sensitivities of short- and long-wavelength sensitive cone mechanisms in the frog retina. Acta Physiol Scand 152:115–124

    Article  PubMed  CAS  Google Scholar 

  • Kunz YW, Wildenburg G, Goodrich L, Callaghan E (1994) The fate of ultraviolet receptors in the retina of the Atlantic salmon (Salmo salar). Vis Res 34:1375–1383

    Article  PubMed  CAS  Google Scholar 

  • Landreth HF, Ferguson DE (1967) Newts: sun-compass orientation. Science 158:1459–1461

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Yemelyanov KM (2006) Separation and contrast enhancement of overlapping cast shadow components using polarization. Opt Express 14:7099–7107

    Article  PubMed  Google Scholar 

  • Mariani AP (1986) Photoreceptors of the larval tiger salamander retina. Proc R Soc Lond B 227:483–492

    Article  PubMed  CAS  Google Scholar 

  • Marshall J, Cronin TW (2011) Polarisation vision. Curr Biol 21:R101–R105

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Rochow VB, Coddington PE (2003) Eyes and vision of the New Zealand torrentfish Cheimarrichthys fosteri von Haast (1874): histology, photochemistry and electrophysiology. In: Val AL, Kapoor BG (eds) Fish adaptations. Science Publications, Enfield, Plymouth, pp 337–381

    Google Scholar 

  • Meyer-Rochow VB, Morita Y, Tamotsu S (1999) Immunocytochemical observations of the pineal organ and retina of the Antarctic teleosts Pagothenia borchgrevinki and Trematomus bernacchii. J Neurocytol 28:125–130

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Rochow VB, Pehlemann FW (1990) Retinal organization in the native New Zealand frogs Leiopelma archeyi, L. hamiltoni, and L. hochstetteri (Amphibia: Anura; Leiopelmatidae). J Roy Soc NZ 20:349–366

    Article  Google Scholar 

  • Miyazaki T, Iwami I, Meyer-Rochow VB (2011) The position of the retinal area centralis changes with age in Champsocephalus gunnari (Channichthyidae), a predatory fish from coastal Antarctic waters. Polar Biol 34:117–1123

    Google Scholar 

  • Nilsson D, Warrant EJ (1999) Seeing the third quality of light. Curr Biol 9:R535–R537

    Article  PubMed  CAS  Google Scholar 

  • Patrick DA, Calhoun AJK, Hunter ML (2007) Orientation of juvenile wood frogs, Rana sylvatica, leaving experimental ponds. J Herpetol 41:158–163

    Article  Google Scholar 

  • Perry RJ, McNoughton PA (1991) Response properties of cones from the retina of the tiger salamander. J Physiol 433:561–587

    PubMed  CAS  PubMed Central  Google Scholar 

  • Phillips JB (1986) Magnetic compass orientation in the Eastern red spotted newt (Notophthalmus viridescens). J Comp Physiol A 158:103–109

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB (1998) Magnetoreception. In: Heatwole H (ed) Amphibian biology 3: sensory perception. Surrey Beatty & Sons Pty Ltd, Chipping Norton, pp 954–964

    Google Scholar 

  • Phillips JB, Deutschlander ME, Freake MJ, Borland SC (2001) The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol 204:2543–2552

    PubMed  CAS  Google Scholar 

  • Przyrembel C, Keller B, Neumeyer C (1995) Trichromatic colour vision in the salamander (Salamandra salamandra). J Comp Physiol A 176:575–586

    Article  Google Scholar 

  • Reuter T (1969) Visual pigments and ganglion cell activity in the retinae of tadpoles and adult frogs (Rana temporaria L.). Act Zool Fenn 122:1–64

    Google Scholar 

  • Ritz T, Dommer DH, Phillips JB (2002) Shedding light on vertebrate magnetoreception. Neuron 34:503–506

    Article  PubMed  CAS  Google Scholar 

  • Roberts NW, Gleeson HF (2004) The absorption of polarized light by vertebrate photoreceptors. Vis Res 44:2643–2652

    Article  PubMed  CAS  Google Scholar 

  • Roberts NW, Porter ML, Cronin TW (2011) The molecular basis of mechanisms underlying polarization vision. Philos Trans R Soc B 366:627–637

    Article  CAS  Google Scholar 

  • Röhlich P, Szel A (2000) Photoreceptor cells in the Xenopus retina. Microsc Res Tech 50:327–337

    Article  PubMed  Google Scholar 

  • Russell AP, Bauer AM, Johnson MK (2005) Migration in amphibians and reptiles. In: Bewa AMT (ed) Migration of organisms: climate, geography, ecology. Springer, Heidelberg, pp 151–203

    Chapter  Google Scholar 

  • Sabbah S, Lerner A, Erlick C, Shashar N (2005) Underwater polarization vision—a physical examination. Recent Res Dev Exp Theor Biol 1:123–176

    Google Scholar 

  • Schmidt WJ (1938) Doppelbrechung, Dichroismus und Feinbau des Aussengliedes der Sehzellen vom Frosch. Z Zellforsch 22:485–522

    Article  Google Scholar 

  • Schulten K (1982) Magnetic field effects in chemistry and biology. Adv Solid State Phys 22:61–83

    Article  CAS  Google Scholar 

  • Schulten K, Swenberg C, Walter A (1978) A biomagnetic sensory mechanism based on magnetic field-modulated coherent electron spin motion. Z Phys Chem NF111:1–5

    Article  Google Scholar 

  • Sinsch U (1990) Migration and orientation in anuran amphibians. Ethol Ecol Evol 2:65–79

    Article  Google Scholar 

  • Sinsch U (2006) Orientation and navigation in amphibian. Mar Freshw Behav Physiol 39:65–71

    Article  Google Scholar 

  • Stebbins RC, Cohen NW (1995) A natural history of amphibians. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Stone LS (1964) The structure and visual function of the eye of larval and adult cave salamanders Typhlotriton spelaeus. J Exp Zool 156:201–218

    Article  PubMed  CAS  Google Scholar 

  • Sweeney A, Jiggins C, Johnsen S (2003) Polarized light as a butterfly mating signal. Nature 423:31

    Article  PubMed  CAS  Google Scholar 

  • Taylor DH, Adler K (1978) The pineal body: site of extraocular perception of celestial cues for orientation in the tiger salamander (Ambystoma tigrinum). J Comp Physiol A 124:357–361

    Article  Google Scholar 

  • Taylor DH, Auburn JS (1978) Orientation of amphibians by linearly polarized light. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Heidelberg, pp 334–346

    Chapter  Google Scholar 

  • Taylor DH, Ferguson DE (1970) Extraoptic celestial orientation in the southern cricket frog Acris gryllus. Science 168:390–392

    Article  PubMed  CAS  Google Scholar 

  • Temple SE (2011) Why different regions of the retina have different spectral sensitivities: a review of mechanisms and functional significance of intraretinal variability in spectral sensitivity in vertebrates. Vis Neurosci 28:281–293

    Article  PubMed  CAS  Google Scholar 

  • Timm BC, McGarigal K, Jenkins CL (2007) Emigration orientation of juvenile pond-breeding amphibians in western Massachusetts. Copeia 3:658–698

    Google Scholar 

  • Tsukamoto Y (1987) The number, depth and elongation of disc incisures in the retinal rod of Rana catesbeiana. Exp Eye Res 45:105–116

    Article  PubMed  CAS  Google Scholar 

  • Vigh B, Vigh-Teichmann I (1986) Three types of photoreceptors in the pineal and frontal organs of frogs: ultrastructure and opsin immunoreactivity. Arch Histol Jap 49:495–518

    Article  PubMed  CAS  Google Scholar 

  • Vigh B, Vigh-Teichmann I, Oksche A (1985) Sensory cells of the ‘rod’ and ‘cone’ type in the pineal organ of Rana esculenta as revealed by immunoreaction against opsin and by the presence of an oil (lipid) droplet. Cell Tissue Res 240:143–148

    Article  PubMed  CAS  Google Scholar 

  • Vigh-Teichmann I, Vigh B (1990) Opsin immunocytochemical characterization of different types of photoreceptors in the frog pineal organ. J Pineal Res 8:323–333

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R (1995) Magnetic orientation in animals. Springer, Heidelberg

    Book  Google Scholar 

  • Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191:675–693

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R, Munro U (2000a) Light-dependent magnetoreception: does directional information change with light intensity? Naturwissenschaften 87:36–40

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R, Munro U (2000b) Light-dependent magnetoreception in birds: the effect of intensity of 565 nm green light. Naturwissenschaften 87:366–369

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Kleinschmidt J, Sun P, Witkovsky P (1994) Identification of cone classes in Xenopus retina by immunocytochemistry and staining with lectins and vital dyes. Vis Neurosci 11:1185–1192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank Prof. Hong Yang Yan (Taiwan National Academy of Science) for valuable hints on relevant literature and President James Jin Kyung Kim of Pyongyang University of Science and Technology for his support and for allowing me time to complete this chapter during my sabbatical semester in North Korea (DPRK). I am grateful to Dr. Hans-Bert Schikora and Mr Dieter Florian for making available the photographs in Figs. 10.1 and 10.2 and furthermore to Prof. G. Horváth for inviting me to contribute this chapter to this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Benno Meyer-Rochow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer-Rochow, V.B. (2014). Polarization Sensitivity in Amphibians. In: Horváth, G. (eds) Polarized Light and Polarization Vision in Animal Sciences. Springer Series in Vision Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54718-8_10

Download citation

Publish with us

Policies and ethics