Skip to main content

Polarization Vision: A Discovery Story

  • Chapter
  • First Online:
Polarized Light and Polarization Vision in Animal Sciences

Part of the book series: Springer Series in Vision Research ((SSVR,volume 2))

Abstract

During the last half a century, polarization vision has become a flourishing field of multidisciplinary research in neuroethology and sensory ecology spanning the full methodological range from membrane biophysics and photoreceptor optics to behavioural analyses in the laboratory as well as in the field. It comprises a multitude of behavioural tasks accomplished by various groups of animals in both terrestrial and aquatic environments. The fact that this richness of behaviours mediated by naturally occurring polarized light has come to the fore only rather recently is certainly due to our own inability to perceive these polarized light phenomena without the aid of special optical devices. While in the present book the chapters are arranged according to animal taxa, so that questions are posed and arguments are presented within the branching pattern of the phylogenetic tree, this introductory chapter retraces the time arrow of discovery. For example, immediately after Karl von Frisch had demonstrated that bees can perceive the polarization of skylight, the 1950s were dominated by the search for the polarization analyser in arthropod eyes. The 1970s and early 1980s became high noon for the behavioural experimental analysis of the bee’s and ant’s skylight compass, followed in the 1990s by the advent of forceful neurobiological investigations of the polarization vision network residing in the insect (especially locust) brain. At about the same time polarized reflections from water surfaces were recognized as cues used by flying aquatic insects on dispersal. In the late 1980s vertebrates, mainly fish and birds, appeared on the polarization vision scene as well. Since the turn of the millennium long-standing studies of various aspects of underwater polarization vision have received an enormous boost, especially by including small-field, close-range polarization signalling, and now advance at an ever increasing pace. Most recently, with new technologies at hand, the interest in the basic mechanisms of polarization sensitivity comes full circle when now a closer and more sophisticated look can be taken at the molecular mechanisms of how dichroism is generated within the photoreceptor membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arwin H, Magnusson R, Landin J, Järrendahl K (2012) Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson. Philos Mag 92:1583–1599

    CAS  Google Scholar 

  • Autrum H, Stumpf H (1950) Das Bienenauge als Analysator für polarisiertes Licht. Z Naturforsch 5b:116–122

    Google Scholar 

  • Baumann O, Lutz K (2006) Photoreceptor morphogenesis in the Drosophila compound eye: R1-R6 rhabdomeres become twisted just before eclosion. J Comp Neurol 498:68–79

    PubMed  Google Scholar 

  • Bennett JM, McAllister DT, Cabe GM (1973) Albert A. Michelson, Dean of American Optics—life, contributions to science, and influence on modern-day physics. Appl Opt 12:2253–2279

    PubMed  CAS  Google Scholar 

  • Berger P, Segal MJ (1952) La discrimination du plan de polarisation de la lumière par l’oiel de l’abeille. C R Acad Paris 234:1308–1310

    Google Scholar 

  • Blahó M, Egri Á, Hegedüs R, Jósvai J, Tóth M, Kertész K, Biró LP, Kriska G, Horváth G (2012) No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle. Physiol Behav 105:1067–1075

    PubMed  Google Scholar 

  • Blest AD, Stowe S, Eddey W (1982) A labile Ca2+-dependent cytoskeleton in rhabdomeral microvilli of blowflies. Cell Tissue Res 223:553–573

    PubMed  CAS  Google Scholar 

  • Boal JG, Shashar N, Grable MM, Vaughan KH, Loew ER, Hanlon RT (2004) Behavioral evidence for intraspecific signaling with achromatic and polarized light by cuttlefish (Mollusca: Cephalopoda). Behaviour 141:837–861

    Google Scholar 

  • Brines ML (1978) Skylight polarization patterns as cues for honey bee orientation: physical measurements and behavioural experiments. PhD thesis, Rockefeller University, New York

    Google Scholar 

  • Brines ML, Gould JL (1979) Bees have rules. Science 206:571–573

    PubMed  CAS  Google Scholar 

  • Brown PK (1972) Rhodopsin rotates in the visual receptor membrane. Nat New Biol 236:35–38

    PubMed  CAS  Google Scholar 

  • Burkhardt D, Wendler L (1960) Ein direkter Beweis für die Fähigkeit einzelner Sehzellen des Insektenauges, die Schwingungsrichtung polarisierten Lichtes zu analysieren. Z Vergl Physiol 43:687–692

    Google Scholar 

  • Cameron DA, Pugh EN (1991) Double cones as a basis for a new type of polarization vision in vertebrates. Nature 353:161–164

    PubMed  CAS  Google Scholar 

  • Carthy JD (1951) The orientation of two allied species of British ants. Behaviour 3:275–381

    Google Scholar 

  • Chiou TH, Mäthger LM, Hanlon RT, Cronin TW (2007) Spectral and spatial properties of polarized light reflections from the arms of squid (Loligo pealeii) and cuttlefish (Sepia officinalis). J Exp Biol 210:3624–3635

    PubMed  Google Scholar 

  • Chiou TH, Kleinlogel S, Cronin TW, Caldwell R, Loeffler B, Siddiqi A, Goldizen A, Marshall JN (2008) Circular polarization vision in a stomatopod crustacean. Curr Biol 18:429–434

    PubMed  CAS  Google Scholar 

  • Chiou TH, Marshall NJ, Caldwell RL, Cronin TW (2011) Changes in light-reflecting properties of signalling appendages alter mate choice behaviour in a stomatopod crustacean, Haptosquilla trispinosa. Mar Freshw Behav Physiol 44:1–11

    Google Scholar 

  • Chiou TH, Place AR, Caldwell RL, Marshall NJ, Cronin TW (2012) A novel function for a carotinoid: astaxanthin used as a polarizer for visual signalling in a mantis shrimp. J Exp Biol 215:584–589

    PubMed  CAS  Google Scholar 

  • Cone RA (1972) Rotational diffusion of rhodopsin in the visual receptor membrane. Nat New Biol 236:39–43

    PubMed  CAS  Google Scholar 

  • Coulson KL (1988) Polarization and intensity of light in the atmosphere. A. Deepak Publishing, Hampton, VA

    Google Scholar 

  • Cronin TW, Shashar N (2001) The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle. J Exp Biol 204:2461–2467

    PubMed  CAS  Google Scholar 

  • Cronin TW, Shashar N, Caldwell RL, Marshall J, Cheroske AG, Chiou TH (2003) Polarization vision and its role in biological signaling. Integr Comp Biol 43:549–558

    PubMed  Google Scholar 

  • Cronin TW, Warrant EJ, Greiner B (2006) Celestial polarization patterns during twilight. Appl Opt 45:5582–5589

    PubMed  Google Scholar 

  • Cronin TW, Marshall J, Wehling MF (2011) Dedication: Talbot H. Waterman. Philos Trans R Soc Lond B 366:617–618

    Google Scholar 

  • Csabai Z, Boda P, Bernáth B, Kriska G, Horváth G (2006) A ‘polarization sun-dial’ dictates the optimal time of day for dispersal by flying aquatic insects. Freshw Biol 51:1341–1350

    Google Scholar 

  • Dacke M, Nilsson DE, Warrant EJ, Blest AD, Land MF, O’Carroll DC (1999) Built-in polarizers form part of a compass organ in spiders. Nature 401:470–473

    CAS  Google Scholar 

  • Dacke M, Nilsson DE, Scholtz CH, Byrne M, Warrant EJ (2003a) Insect orientation to polarized moonlight. Nature 424:33

    PubMed  CAS  Google Scholar 

  • Dacke M, Nordström P, Scholtz CH (2003b) Twilight orientation to polarized light in the crepuscular dung beetle Scarabaeus zambesianus. J Exp Biol 206:1535–1543

    PubMed  Google Scholar 

  • Danneel R, Zeutzschel B (1957) Über den Feinbau der Retinula bei Drosophila melanogaster. Z Naturforsch 12b:580–583

    Google Scholar 

  • de Vries H, Spoor A, Jielof R (1953) Properties of the eye with respect to polarized light. Physica 19:419–432

    Google Scholar 

  • Decouet H, Stowe S, Blest A (1984) Membrane-associated actin in the rhabdomeral microvilli of crayfish photoreceptors. J Cell Biol 98:834–846

    CAS  Google Scholar 

  • Diamond J (1991) Evolutionary design of intestinal nutrient absorption: enough but not too much. Physiology 6:92–96

    Google Scholar 

  • Duelli P (1975) A fovea for e-vector orientation in the eye of Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol 102:43–56

    Google Scholar 

  • Eguchi E (1965) Rhabdom structure and receptor potentials in single crayfish retinular cells. J Cell Comp Physiol 66:411–429

    CAS  Google Scholar 

  • Fent K (1985) Himmelsorientierung bei der Wüstenameise Cataglyphis bicolor: Bedeutung von Komplexaugen und Ocellen. PhD thesis, University of Zürich

    Google Scholar 

  • Fent K, Wehner R (1985) Ocelli: a celestial compass in the desert ant, Cataglyphis. Science 228:192–194

    PubMed  CAS  Google Scholar 

  • Fernández-Morán H (1956) Fine structure of the insect retinula as revealed by electron microscopy. Nature 177:742–743

    Google Scholar 

  • Fineran BA, Nicol JAC (1978) Studies on the photoreceptors of Anchoa mitchilli and A. hepsetus (Engraulidae) with particular reference to the cones. Philos Trans R Soc Lond B 283:25–60

    Google Scholar 

  • Fischer S, Meyer-Rochow VB, Müller CHG (2014) Compound eye miniaturization in Lepidoptera: a comparative morphological analysis. Acta Zool. doi:10.1111/azo.12041

  • Forward RB, Horch KW, Waterman TH (1973) Evidence for e-vector and light intensity pattern discrimination by the teleost Demogenys. J Comp Physiol 87:189–202

    Google Scholar 

  • Gál J, Horváth G, Barta A, Wehner R (2001) Polarization of the moonlit clear night sky measured by full-sky imaging polarimetry at full moon: comparison of the polarization of moonlit and sunlit skies. J Geophys Res D 106:22647–22653

    Google Scholar 

  • Goddard SM, Forward RB (1991) The role of the underwater polarized light pattern in sun compass of the grass shrimp, Palaemonetes vulgaris. J Comp Physiol A 169:479–491

    Google Scholar 

  • Goldsmith TH (1962) Fine structure of the retinulae in the compound eye of the honeybee. J Cell Biol 14:489–494

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldsmith TH, Philpott DF (1957) The microstructure of the compound eyes of insects. J Biophys Biochem Cytol 3:429–440

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldsmith TH, Wehner R (1977) Restrictions of rotational and tranlational diffusion of pigment in the membranes of rhabdomeric photoreceptors. J Gen Physiol 70:453–490

    PubMed  CAS  Google Scholar 

  • Görner P (1958) Die optische und kinästhetische Orientierung der Trichterspinne Agelena labyrinthica. Z Vergl Physiol 41:111–153

    Google Scholar 

  • Haidinger W (1844) Über das direkte Erkennen des polarisirten Lichts und die Lage der Polarisationsebene. Ann Physik Chemie (Poggendorf Annalen) 63:29–39

    Google Scholar 

  • Hárosi FI, MacNichol EF (1974) Visual pigments of goldfish cones: spectral properties and dichroism. Gen Physiol 63:279–304

    Google Scholar 

  • Hawryshyn CW (1992) Polarisation vision in fish. Am Sci 80:164–175

    Google Scholar 

  • Hawryshyn CW, Bolger AE (1990) Spatial orientation of trout to partially polarized light. J Comp Physiol A 167:691–697

    Google Scholar 

  • Hawryshyn CW, Arnold MG, Bowering D, Cole RL (1990) Spatial orientation of rainbow trout to plane-polarized light: the ontogeny of e-vector discrimination and spectral characteristics. J Comp Physiol A 166:565–574

    Google Scholar 

  • Hegedüs R, Horváth G (2004a) Polarizational colours could help polarization-dependent colour vision systems to discriminate between shiny and matt surfaces, but cannot unambiguously code surface orientation. Vis Res 44:2337–2348

    PubMed  Google Scholar 

  • Hegedüs R, Horváth G (2004b) How and why are uniformly polarization-sensitive retinae subject to polarization-related artefacts? Correction of some errors in the theory of polarization-induced false colours. J Theor Biol 230:77–87

    PubMed  Google Scholar 

  • Hegedüs R, Åkesson S, Horváth G (2007a) Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies. J Opt Soc Am A 24:2347–2356

    Google Scholar 

  • Hegedüs R, Åkesson S, Wehner R, Horváth G (2007b) Could Vikings have navigated under foggy and cloudy conditions by skylight polarization? On the atmospheric optical prerequesites of polarimetric Viking navigation under foggy and cloudy skies. Proc R Soc Lond A 463:1081–1095

    Google Scholar 

  • Heinze S, Homberg U (2007) Map-like representation of celestial E-vector orientations in the brain of an insect. Science 315:995–997

    PubMed  CAS  Google Scholar 

  • Heinze S, Homberg U (2009) Linking the input to the output: new sets of neurons complement the polarization vision network in the locust central complex. J Neurosci 29:4911–4921

    PubMed  CAS  Google Scholar 

  • Helbig AJ (1990) Depolarization of natural skylight disrupts orientation of an avian nocturnal migrant. Experientia 46:755–758

    Google Scholar 

  • Herrling PL (1975) Topographische Untersuchungen zur funktionellen Anatomie der Retina von Cataglyphis bicolor (Formicidae, Hymenoptera). PhD thesis, University of Zürich

    Google Scholar 

  • Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208

    PubMed  CAS  Google Scholar 

  • Homberg U (2008) Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct Dev 37:347–362

    PubMed  Google Scholar 

  • Homberg U, Heinze S, Pfeiffer K, Kinoshita M, el Jundi B (2011) Central neural coding of sky polarization in insects. Philos Trans R Soc Lond B 366:680–687

    Google Scholar 

  • Horváth G, Varjú D (1995) Underwater refraction-polarization patterns of skylight perceived by aquatic animals through Snell’s window of the flat water surface. Vis Res 35:1651–1666

    PubMed  Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision – polarization patterns in nature. Springer, Heidelberg – Berlin

    Google Scholar 

  • Horváth G, Zeil J (1996) Kuwait oil lakes as insect traps. Nature 379:303–304

    Google Scholar 

  • Horváth G, Bernáth B, Molnár G (1998) Dragonflies find crude oil visually more attractive than water: multiple-choice experiments on dragonfly polarotaxis. Naturwissenschaften 85:292–297

    Google Scholar 

  • Horváth G, Gál J, Labhart T, Wehner R (2002) Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies. J Exp Biol 205:3281–3298

    PubMed  Google Scholar 

  • Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100

    PubMed  Google Scholar 

  • Israelachvili JN, Wilson M (1976) Absorption characteristics of oriented photopigments in microvilli. Biol Cybern 21:9–15

    PubMed  CAS  Google Scholar 

  • Ivanoff A (1974) Polarization measurements in the sea. In: Jerlov NG, Nielsen ES (eds) Optical aspects of oceanography. Academic, London, pp 151–175

    Google Scholar 

  • Jander R (1957) Die optische Richtungsorientierung der roten Waldameise (Formica rufa). Z Vergl Physiol 40:162–238

    Google Scholar 

  • Jerlov NG (1968) Optical oceanography. Elsevier, Amsterdam

    Google Scholar 

  • Kelber A (1999) Why ‘false’ colours are seen by butterflies. Nature 402:251

    PubMed  CAS  Google Scholar 

  • Kelber A, Thunell C, Arikawa K (2001) Polarisation-dependent colour vision in Papilio butterflies. J Exp Biol 204:2469–2480

    PubMed  CAS  Google Scholar 

  • Kinoshita M, Pfeiffer K, Homberg U (2007) Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria. J Exp Biol 210:1350–1361

    PubMed  Google Scholar 

  • Kirschfeld K (1972) Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z Naturforsch 27c:578–579

    Google Scholar 

  • Kirschfeld K, Lindauer M, Martin H (1975) Problems of menotactic orientation according to the polarized light of the sky. Z Naturforsch 30c:88–90

    Google Scholar 

  • Kriska G, Horváth G, Andrikovics S (1998) Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. J Exp Biol 201:2273–2286

    PubMed  CAS  Google Scholar 

  • Kriska G, Bernáth B, Farkas R, Horváth G (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Insect Physiol 55:1167–1173

    PubMed  CAS  Google Scholar 

  • Kuwabara M, Naka K (1959) Response of a single retinua cell to polarized light. Nature 184:455–456

    PubMed  Google Scholar 

  • Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye: polarizational and angular sensitivity. J Comp Physiol 141:19–30

    Google Scholar 

  • Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J Comp Physiol A 158:1–7

    Google Scholar 

  • Labhart T (1988) Polarization opponent interneurons in the insect visual system. Nature 331:435–437

    Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    PubMed  CAS  Google Scholar 

  • Laughlin SB (1976) The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J Comp Physiol 111:221–247

    Google Scholar 

  • Laughlin SB, Menzel R, Snyder AW (1975) Membranes, dichroism and receptor sensitivity. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Heidelberg, pp 237–259

    Google Scholar 

  • Lebhardt F, Ronacher B (2014) Transfer of direction information between the polarization compass and the sun compass in desert ants. J Comp Physiol A (submitted)

    Google Scholar 

  • Lerner A, Sabbah S, Erlick C, Shashar N (2011) Navigation by light polarization in clear and turbid waters. Philos Trans R Soc Lond B 366:671–679

    Google Scholar 

  • Lillywhite PG (1978) Coupling between locust photoreceptors revealed by a study of quantum bumps. J Comp Physiol A 125:13–27

    Google Scholar 

  • Lythgoe JN (1971) Vision. In: Woods JD, Lythgoe JN (eds) Underwater science. Oxford University Press, Oxford, pp 103–139

    Google Scholar 

  • Lythgoe JN, Hemmings CC (1967) Polarized light and underwater vision. Nature 213:893–894

    PubMed  CAS  Google Scholar 

  • Marshall NJ, Cronin TW, Shashar N, Land M (1999) Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Curr Biol 9:755–758

    PubMed  CAS  Google Scholar 

  • Mäthger LM, Denton EJ (2001) Reflective properties of iridophores and fluorescent ‘eyespots’ in the loliginid squids Alloteuthis subulata and Loligo vulgaris. J Exp Biol 204:2103–2118

    PubMed  Google Scholar 

  • Mäthger LM, Hanlon R (2007) Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res 329:179–186

    PubMed  Google Scholar 

  • Meyer EP, Domanico V (1999) Microvillar orientation in the photoreceptors of the ant Cataglyphis bicolor. Cell Tissue Res 295:355–361

    PubMed  CAS  Google Scholar 

  • Michelson AA (1911) On the metallic colouring in birds and insects. Philos Mag 21:554–567

    CAS  Google Scholar 

  • Miller WH (1957) Morphology of the ommatidia in the compound eye of Limulus. J Biophys Biochem Cytol 3:421–428

    PubMed  CAS  PubMed Central  Google Scholar 

  • Montell C (1999) Visual transduction in Drosophila. Annu Rev Cell Dev Biol 15:231–268

    PubMed  CAS  Google Scholar 

  • Moody MF, Parriss JR (1961) The discrimination of polarized light by Octopus: a behavioral and morphological study. Z Vergl Physiol 44:268–291

    Google Scholar 

  • Mote MI, Wehner R (1980) Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J Comp Physiol 137:63–71

    Google Scholar 

  • Muheim R (2011) Behavioural and physiological mechanisms of polarized light sensitivity in birds. Philos Trans R Soc Lond B 366:763–771

    Google Scholar 

  • Müller M, Wehner R (2007) Wind and sun as compass cues in desert ant navigation. Naturwissenschaften 94:589–594

    PubMed  Google Scholar 

  • Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–368

    PubMed  CAS  Google Scholar 

  • Nilsson DE, Warrant EJ (1999) Seeing the third quality of light. Curr Biol 9:R535–R537

    PubMed  CAS  Google Scholar 

  • Novales-Flamarique I (2011) Unique photoreceptor arrangements in a fish with polarized light discrimination. J Comp Neurol 519:714–737

    PubMed  Google Scholar 

  • Novales-Flamarique I, Hendry A, Hawryshyn CW (1992) The photic environment of a salmonid nursery lake. J Exp Biol 169:121–141

    Google Scholar 

  • Novales-Flamarique I, Hawryshyn CW, Hárosi FI (1998) Double-cone internal reflection as a basis for polarization detection in fish. J Opt Soc Am A 15:349–358

    CAS  Google Scholar 

  • Papi F (1955a) Orientamento astronomico in alcuni Carabidi. Atti Soc Tosc Sci Nat Pisa Mem 62B:83–97

    Google Scholar 

  • Papi F (1955b) Ricerche sull’orientamento astronomico di Arctosa (Araneae Lycosidae). Pubbl Staz Zool Napoli 27:76–103

    Google Scholar 

  • Pardi L, Papi F (1952) Die Sonne als Kompass bei Talitrus saltator, Amphipoda, Talitridae. Naturwissenschaften 39:262–263

    Google Scholar 

  • Phillips JB, Waldvogel JA (1988) Celestial polarized patterns as a calibration reference for sun compass of homing pigeons. J Theor Biol 131:55–67

    Google Scholar 

  • Pomozi I, Horváth G, Wehner R (2001) How the clear-sky angle of the polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. J Exp Biol 204:2933–2942

    PubMed  CAS  Google Scholar 

  • Poo MM, Cone RA (1974) Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 247:438–441

    PubMed  CAS  Google Scholar 

  • Pye JD (2010) The distribution of circularly polarized light reflections in the Scarabaeoidea (Coleoptera). Biol J Linn Soc 100:585–596

    Google Scholar 

  • Räber F (1979) Retinatopographie und Sehfeldtopologie des Komplexauges von Cataglyphis bicolor (Formicidae, Hymenoptera). PhD thesis, University of Zürich

    Google Scholar 

  • Reid SF, Narendra A, Hemmi JM, Zeil J (2011) Polarized skylight and the landmark panorama provide night-active bull ants with compass information during route following. J Exp Biol 214:363–370

    PubMed  Google Scholar 

  • Ribi WA (1979) Do the rhabdomeric structures in bees and flies really twist? J Comp Physiol 134:109–112

    Google Scholar 

  • Ribi WA (1980) New aspects of polarized light detectors in the bee in view of non-twisting rhabdomeric structures. J Comp Physiol 137:281–285

    Google Scholar 

  • Roberts NW, Needham MG (2007) A mechanism of polarized light sensitivity in cone photoreceptors of the goldfish Carassius auratus. Biophys J 93:3241–3248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roberts NW, Porter ML, Cronin TW (2011) The molecular basis of mechanisms underlying polarization vision. Philos Trans R Soc Lond B 366:627–637

    CAS  Google Scholar 

  • Rossel S, Wehner R (1984a) How bees analyse the polarization patterns in the sky. J Comp Physiol A 154:607–615

    Google Scholar 

  • Rossel S, Wehner R (1984b) Celestial orientation in bees: the use of spectral cues. J Comp Physiol A 155:605–613

    Google Scholar 

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131

    Google Scholar 

  • Rozenberg GV (1966) Twilight. A study in atmosheric optics. Plenum, New York

    Google Scholar 

  • Sabbah S, Barta A, Gál J, Horváth G, Shashar N (2006) Experimental and theoretical study of skylight polarization transmitted through Snell’s window of a flat water surface. J Opt Soc Am A 23:1978–1988

    Google Scholar 

  • Saibil HR (1982) An ordered membrane-cytoskeleton network in squid photoreceptor microvilli. J Mol Biol 158:435–456

    PubMed  CAS  Google Scholar 

  • Santschi F (1923) L’orientation sidérale des fourmis, et quelques considérations sur leurs differentes possibilités d’orientation. Mém Soc Vaud Sci Nat 4:137–175

    Google Scholar 

  • Schinz RH (1975) Structural specialization in the dorsal retina of the bee, Apis mellifera. Cell Tissue Res 162:23–34

    PubMed  CAS  Google Scholar 

  • Schmidt WJ (1924) Die Bausteine des Tierkörpers im polarisierten Licht. F. Cohen, Bonn

    Google Scholar 

  • Schmidt WJ (1951) Polarisationsoptische Analyse der Verknüpfung von Protein- und Lipidmolekülen, erläutert am Aussenglied der Sehzellen der Wirbeltiere. Pubbl Staz Zool Napoli 23(Suppl):158–183

    Google Scholar 

  • Schwarz S, Albert L, Wystrach A, Cheng K (2011a) Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. J Exp Biol 214:901–906

    PubMed  Google Scholar 

  • Schwarz S, Wystrach A, Cheng K (2011b) A new navigational mechanism mediated by ant ocelli. Biol Lett 7:856–858

    PubMed  PubMed Central  Google Scholar 

  • Schwind R (1983) A polarization-sensitive response of the flying water bug Notonecta glauca to UV light. J Comp Physiol 150:87–91

    Google Scholar 

  • Schwind R (1984) Evidence for true polarization vision based on a two-channel analyzer system in the eye of the water bug, Notonecta glauca. J Comp Physiol A 154:53–57

    Google Scholar 

  • Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540

    Google Scholar 

  • Shashar N, Rutledge PS, Cronin TW (1996) Polarization vision in cuttlefish: a concealed communication channel? J Exp Biol 199:2077–2084

    PubMed  Google Scholar 

  • Shashar N, Hanlon RT, Petz AD (1998) Polarization vision helps detect transparent prey. Nature 393:222–223

    CAS  Google Scholar 

  • Shashar N, Hagen R, Boal JG, Hanlon RT (2000) Cuttlefish use polarization sensitivity in predation on silvery fish. Vis Res 40:71–75

    PubMed  CAS  Google Scholar 

  • Shashar N, Sabbah S, Cronin TW (2004) Transmission of linearly polarized light in seawater: implications for polarization signaling. J Exp Biol 207:3619–3628

    PubMed  Google Scholar 

  • Shashar N, Johnsen S, Lerner A, Sabbah S, Chiao CC, Mäthger LM, Hanlon RT (2011) Underwater linear polarization: physical limitations to biological functions. Philos Trans R Soc Lond B 366:649–654

    Google Scholar 

  • Shaw SR (1967) Simultaneous recordings from two cells in the locust retina. Z Vergl Physiol 55:183–194

    Google Scholar 

  • Smola U, Tscharntke H (1979) Twisting of blowfly (Calliphora erythrocephala; Diptera: Calliphoridae) rhabdomeres: an in vivo feature unaffected by preparation or fixation. J Insect Morphol Embryol 10:331–344

    Google Scholar 

  • Smola U, Wunderer H (1981) Fly rhabdomeres twist in vivo. J Comp Physiol 142:43–49

    Google Scholar 

  • Stavenga DG, Matsushita A, Arikawa K, Leertouwer HL, Wilts BD (2012) Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors. J Exp Biol 215:657–662

    PubMed  Google Scholar 

  • Stephens GC, Fingerman M (1953) The orientation of Drosophila to plane polarized light. Ann Entomol Soc Am 46:75–83

    Google Scholar 

  • Stockhammer K (1956) Die Wahrnehmung der Schwingungsrichtung linear polarisierten Lichtes bei Insekten. Z Vergl Physiol 38:30–83

    Google Scholar 

  • Stowe S (1983) Light-induced and spontaneous breakdown of the rhabdoms in a crab at dawn: depolarisation versus calcium levels. J Comp Physiol 153:365–375

    Google Scholar 

  • Strausfeld NJ (1999) A brain region in insects that supervises walking. Prog Brain Res 123:273–284

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ (2012) Arthropod brains. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Sweeney A, Jiggins C, Johnsen S (2003) Insect communication: polarized light as a butterfly mating signal. Nature 423:31–32

    PubMed  CAS  Google Scholar 

  • Timofeeva VA (1962) Spatial distribution of the degree of polarization of natural light in the sea. Bull Acad Sci USSR Geophys Ser 12:1160–1164

    Google Scholar 

  • van der Glas HW (1976) Polarization induced colour patterns: a model of the perception of the polarized skylight. II. Experiments with direction trained dancing bees, Apis mellifera. Neth J Zool 26:383–413

    Google Scholar 

  • von Frisch K (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148

    PubMed  CAS  Google Scholar 

  • von Helversen O, Edrich W (1974) Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor. J Comp Physiol 94:33–47

    Google Scholar 

  • Vowles DM (1950) Sensitivity of ants to polarized light. Nature 165:282–283

    PubMed  CAS  Google Scholar 

  • Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855

    PubMed  CAS  Google Scholar 

  • Wagner-Boller E (1987) Ontogenese des peripheren visuellen Systems der Honigbiene (Apis mellifera). PhD thesis, University of Zürich

    Google Scholar 

  • Waterman TH (1954) Polarization patterns in submarine illumination. Science 120:927–932

    PubMed  CAS  Google Scholar 

  • Waterman TH (1955) Polarization of scattered sunlight in deep water. Deep Sea Res 3(Suppl):426–434

    Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Heidelberg, pp 281–469

    Google Scholar 

  • Waterman TH (2006) Reviving a neglected celestial underwater polarization compass for aquatic animals. Biol Rev 81:111–115

    PubMed  Google Scholar 

  • Waterman TH, Forward RB (1970) Field evidence for polarized light sensitivity in the fish Zenarchopterus. Nature 228:85–87

    PubMed  CAS  Google Scholar 

  • Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1–132

    Google Scholar 

  • Wehner R (1983) The perception of polarized light. Symp Soc Exp Biol 36:331–369

    PubMed  CAS  Google Scholar 

  • Wehner R (1990) On the brink of introducing sensory ecology: Felix Santschi (1872-1940)—Tabib-en-Neml. Behav Ecol Sociobiol 27:295–306

    Google Scholar 

  • Wehner R (1994) The polarization-vision project: championing organismic biology. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptations. G. Fischer, Stuttgart, pp 103–143

    Google Scholar 

  • Wehner R (1997) The ant’s celestial compass system: spectral and polarizational channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 145–185

    Google Scholar 

  • Wehner R (2001) Polarization vision—a uniform sensory capacity? J Exp Biol 204:2589–2596

    PubMed  CAS  Google Scholar 

  • Wehner R, Bernard GD (1993) Photoreceptor twist: a solution to the false-color problem. Proc Natl Acad Sci USA 90:4132–4135

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wehner R, Duelli P (1971) The spatial orientation of desert ants, Cataglyphis bicolor, before sunrise and after sunset. Experientia 27:1364–1366

    Google Scholar 

  • Wehner R, Labhart T (2006) Polarization vision. In: Warrant E, Nilsson DE (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 291–348

    Google Scholar 

  • Wehner R, Meyer EP (1981) Rhabdomeric twist in bees—artefact or in vivo structure? J Comp Physiol 142:1–17

    Google Scholar 

  • Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Natl Acad Sci USA 103:12575–12579

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wehner R, Strasser S (1985) The POL area of the honey bee’s eye: behavioural evidence. Physiol Entomol 10:337–349

    Google Scholar 

  • Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization vision in the bee. J Comp Physiol 104:225–245

    Google Scholar 

  • Wehner R, Cheng K, Cruse H (2014) Visual navigation strategies in insects: lessons from desert ants. In: Werner J, Chalupa JL (eds) New visual neurosciences. MIT Press, Cambridge, MA, pp 1153–1163

    Google Scholar 

  • Weir PT, Dickinson MH (2012) Flying Drosophila orient to sky polarization. Curr Biol 22:21–27

    PubMed  CAS  Google Scholar 

  • Wellington WG (1953) Motor responses evoked by the dorsal ocelli of Sarcophaga aldrichi, and the orientation of the fly to plane polarized light. Nature 172:1177–1179

    PubMed  CAS  Google Scholar 

  • Wernet M, Velez MM, Clark DA, Baumann-Klausener F, Brown JR, Klovstad M, Labhart T, Clandinin TR (2012) Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr Biol 22:12–20

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wolken JJ, Capenos J, Turano A (1957) Photoreceptor structures. J Biophys Biochem Cytol 3:441–448

    PubMed  CAS  PubMed Central  Google Scholar 

  • Young SR, Martin GR (1984) Optics of retinal oil droplets: a model of light collection and polarization detection in the avian retina. Vis Res 24:129–137

    PubMed  CAS  Google Scholar 

  • Zeil J, Hofmann M (2001) Signals from ‘crabworld’: cuticular reflections in a fiddler crab colony. J Exp Biol 204:2561–2569

    PubMed  CAS  Google Scholar 

  • Zolotov V, Frantsevich L (1973) Orientation of bees by the polarized light of a limited area of the sky. J Comp Physiol 85:25–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Wehner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wehner, R. (2014). Polarization Vision: A Discovery Story. In: Horváth, G. (eds) Polarized Light and Polarization Vision in Animal Sciences. Springer Series in Vision Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54718-8_1

Download citation

Publish with us

Policies and ethics