Skip to main content

Development and Developmental Disorders of the Human Cerebellum

  • Chapter
  • First Online:
Clinical Neuroembryology

Abstract

The brain stem is composed of the midbrain (the mesencephalon) and the hindbrain (the rhombencephalon), and is, at least during development, segmentally organized. The midbrain is composed of two temporarily present segments known as mesomeres, whereas the hindbrain is composed of 8, and more recently of 12, rhombomeres. The cerebellum largely arises from the first rhombomere. The brain stem also contributes 10 of the 12 cranial nerves, III -XII. A great number of genes are involved in the proper development of the brain stem. The isthmus organizer regulates the early development of the mesencephalon and of the rostral part of the rhombencephalon. Each rhombomere is characterized by a unique combination of Hox genes, its Hox code. In mice, spontaneous and targeted (knockout) mutations in these genes result in specific, rhombomere-restricted disruptions in the development of motor nuclei of cranial nerves. Such a ‘rhombomeropathy’ has recently been described for the HOXA1 gene.

In this chapter, patterning of the brain stem and its segmentation are discussed in Sect. 7.2, followed by an overview of the development and developmental disorders of the cranial nerves (Sect. 7.3). In Sect. 7.4, the development of the auditory system and some of its disorders are discussed. Clinical cases illustrate some major malformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386:838–842

    CAS  PubMed  Google Scholar 

  • Aicardi J (1998) Diseases of the nervous system in childhood, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Alcantara S, Ruiz M, De Castro F, Soriano E, Sotelo C (2000) Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development 127:1359–1372

    CAS  PubMed  Google Scholar 

  • Alder J, Cho NK, Hatten ME (1996) Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17:389–399

    CAS  PubMed  Google Scholar 

  • Aldinger KA, Lehmann OJ, Hudgins L, Chizhikov VV, Bassuk AG, Ades LC et al (2009) FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet 41:1037–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander L (1931) Die Anatomie der Seitentaschen der vierten Hirnkammer. Z Anat 95:531–707

    Google Scholar 

  • Altman J, Bayer SA (1978a) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep cerebellar nuclei and the cortex of the cerebellum. J Comp Neurol 179:23–48

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1978b) Prenatal development of the cerebellar system in the rat. II. Cytogenesis and histogenesis of the inferior olive, pontine gray, and the precerebellar reticular nuclei. J Comp Neurol 179:49–76

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1985) Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J Comp Neurol 231:1–26

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1987a) Development of the precerebellar nuclei in the rat. II. The intramural olivary migratory stream and the neurogenetic organization of the inferior olive. J Comp Neurol 257:490–512

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1987b) Development of the precerebellar nuclei in the rat. III. The posterior precerebellar extramural migratory stream and the lateral reticular and external cuneate nuclei. J Comp Neurol 257:513–528

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1987c) Development of the precerebellar nuclei in the rat. IV. The anterior precerebellar extramural migratory stream and the nucleus reticularis tegmenti pontis and the basal pontine gray. J Comp Neurol 257:529–552

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system: in relation to its evolution, structure and functions. CRC, Boca Raton

    Google Scholar 

  • Ambler M, Pogacar S, Sidman R (1969) Lhermitte-Duclos disease (granule cell hypertrophy of the cerebellum). Pathological analysis of the first familial cases. J Neuropathol Exp Neurol 28:622–647

    CAS  PubMed  Google Scholar 

  • Anton G, Zingerle H (1914) Genaue Beschreibung eines Falles von beiderseitigem Kleinhirnmangel. Arch Psychiat (Berl) 54:8–75

    Google Scholar 

  • Arts HH, Doherty D, van Beersum SE, Parisi MA, Letteboer SJ, Gorden NT et al (2007) Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat Genet 39:882–888

    CAS  PubMed  Google Scholar 

  • Aruga J, Yokota N, Hashimoto M, Furuichi T, Fukuda M, Mikoshiba K (1994) A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J Neurochem 63:1880–1890

    CAS  PubMed  Google Scholar 

  • Aruga J, Minowa O, Yaginuma H, Kuno J, Nagai T, Noda T, Mikoshiba K (1998) Mouse Zic1 is involved in cerebellar development. J Neurosci 18:284–293

    CAS  PubMed  Google Scholar 

  • Backman SA, Stambolic V, Suzuki A, Haight J, Elia A, Pretorius J et al (2001) Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet 29:396–403

    CAS  PubMed  Google Scholar 

  • Baker RC, Graves GO (1931) Cerebellar agenesis. Arch Neurol Psychiatry 25:548–555

    Google Scholar 

  • Barkovich AJ (2000) Pediatric neuroimaging, 3rd edn. Lippincott, Philadelphia

    Google Scholar 

  • Barkovich AJ, Kjos BO, Norman D, Edwards MS (1989) Revised classification of posterior fossa cysts and cyst-like malformations based on the results of multiplanar MR imaging. AJNR Am J Neuroradiol 10:977–988

    Google Scholar 

  • Barkovich AJ, Millen KJ, Dobyns WD (2007) A developmental classification of malformations of the brainstem. Ann Neurol 62:625–639

    PubMed  Google Scholar 

  • Barkovich AJ, Millen KJ, Dobyns WB (2009) A developmental and genetic classification for midbrain-hindbrain malformations. Brain 132:3199–3230

    PubMed  PubMed Central  Google Scholar 

  • Barth PG (1993) Pontocerebellar hypoplasias. An overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Dev 15:411–422

    CAS  PubMed  Google Scholar 

  • Barth PG (2012) Pontocerebellar hypoplasia. In: Boltshauser E, Schmahmann JD (eds) Cerebellar disorders in children. Mac Keith, London, pp 219–227

    Google Scholar 

  • Barth PG, Vrensen GFJM, Uylings HBM, Oorthuys JWE, Stam FC (1990) Inherited syndrome of microcephaly, dyskinesia and pontocerebellar hypoplasia: a systemic atrophy with early onset. J Neurol Sci 97:25–42

    CAS  PubMed  Google Scholar 

  • Barth PG, Aronica E, de Vries L, Nikkels PGJ, Scheper W, Hoezemans JJ, Poll-The B-T, Troost D (2007a) Pontocerebellar hypoplasia type 2: a neuropathological update. Acta Neuropathol (Berl) 114:373–386

    Google Scholar 

  • Barth P, Majoie CB, Caan MWA, Weterman MAJ, Kellerman M, Smit LME et al (2007b) Pontine tegmental cap dysplasia: a novel brain malformation with a defect in axon guidance. Brain 130:2258–2266

    PubMed  Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Zhang X (1995) Embryology. In: Duckett S (ed) Pediatric neuropathology. Williams & Wilkins, Baltimore, pp 54–107

    Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q et al (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172

    CAS  PubMed  Google Scholar 

  • Benda CE (1954) The Dandy-Walker syndrome or the so-called atresia of the foramen of Magendie. J Neuropathol Exp Neurol 13:14–29

    CAS  PubMed  Google Scholar 

  • Bergmann C, Zerres K, Senderek J, Rudnik-Schoneborn S, Eggermann T, Hausler M et al (2003) Oligophrenin 1 (OPHN1) gene mutation causes syndromic X-linked mental retardation with epilepsy, rostral ventricular enlargement and cerebellar hypoplasia. Brain 126:1537–1544

    PubMed  Google Scholar 

  • Beuche W, Wickboldt J, Friede RL (1983) Lhermitte-Duclos disease. Its minimal lesions in electron microscope data and CT findings. Clin Neuropathol 2:163–170

    CAS  PubMed  Google Scholar 

  • Bilovocky NA, Romito-DiGiacomo RR, Murcia CL, Maricich SM, Herrup K (2003) Factors in the genetic background suppress the Engrailed-1 cerebellar phenotype. J Neurosci 23:5105–5112

    CAS  PubMed  Google Scholar 

  • Bloch-Gallego E, Ezan F, Tessier-Lavigne M, Sotelo C (1999) Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons. J Neurosci 19:4407–4420

    CAS  PubMed  Google Scholar 

  • Boltshauser E (2004) Cerebellum – small brain but large confusion: a review of selected cerebellar malformations and disruption. Am J Med Genet A 126A(Suppl):376–385

    PubMed  Google Scholar 

  • Boltshauser E, Schmahmann JD (eds) (2012) Cerebellar disorders in children. Mac Keith, London

    Google Scholar 

  • Bonnevie K, Brodal A (1946) Hereditary hydrocephalus in the house mouse: IV. The development of the cerebellar anomalies during foetal life with notes on the normal development of the mouse cerebellum. Skr Norske Vid Akad I Math-Naturv Kl 4:1–60

    Google Scholar 

  • Bordarier C, Aicardi J (1990) Dandy-Walker syndrome and agenesis of the cerebellar vermis: diagnostic problems and genetic counseling. Dev Med Child Neurol 32:285–294

    CAS  PubMed  Google Scholar 

  • Bourrat F, Sotelo C (1988) Migratory pathways and neuritic differentiation of inferior olivary neurons in the rat embryo. Axonal tracing study using the in vitro slab technique. Brain Res 39:19–37

    Google Scholar 

  • Bourrat F, Sotelo C (1990) Migratory pathways and selective aggregation of the lateral reticular neurons in the rat embryo: a horseradish in vitro study, with special reference to migratory pathways of the precerebellar nuclei. J Comp Neurol 294:1–13

    CAS  PubMed  Google Scholar 

  • Branda CD, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    CAS  PubMed  Google Scholar 

  • Brocklehurst G (1969) The development of the human cerebrospinal fluid pathway with particular reference to the roof of the fourth ventricle. J Anat 105:467–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brodal A, Hauglie-Hanssen E (1959) Congenital hydrocephalus with defective development of the cerebellar vermis (Dandy-Walker syndrome). J Neurol Neurosurg Psychiatry 22:99–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brugmann SA, Cordero DR, Helms JA (2010) Craniofacial ciliopathies: a new classification for craniofacial disorders. Am J Med Genet A 152A:2995–3006

    PubMed  PubMed Central  Google Scholar 

  • Budde BS, Namavar Y, Barth PG, Poll-The B, Nurnberg G, Becker C et al (2008) tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet 40:1113–1118

    CAS  PubMed  Google Scholar 

  • Caddy KWT, Biscoe TJ (1975) Preliminary observations on the cerebellum in the mutant mouse Lurcher. Brain Res 91:276–280

    CAS  PubMed  Google Scholar 

  • Cantagrel V, Jl S, Bielas SL, Swistun D, Marsh SE, Bertrand JY et al (2008) Mutations in the cilia gene ARL13B leads to the classical form of Joubert syndrome. Am J Hum Genet 83:170/179

    Google Scholar 

  • Caviness VS Jr, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1:297–326

    PubMed  Google Scholar 

  • Chédotal A (2010) Should I stay or should I go? Becoming a granule cell. Trends Neurosci 33:163–172

    PubMed  Google Scholar 

  • Chizhikov V, Millen KJ (2003) Development and malformations of the cerebellum in mice. Mol Genet Metab 80:54–65

    CAS  PubMed  Google Scholar 

  • Chizhikov V, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133:2793–2804

    CAS  PubMed  Google Scholar 

  • Chung J, Castillo M, Fordham L, Mukherji S, Boydston W, Hudgins R (1998) Spinal intradural cerebellar ectopia. AJNR Am J Neuroradiol 18:897–899

    Google Scholar 

  • Clement E, Mercuri E, Godfrey C, Smith J, Robb S, Kinali M et al (2008) Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 64:573–582

    CAS  PubMed  Google Scholar 

  • Coene KL, Roepman R, Doherty D, Afroze B, Kroes HY, Letteboer SJ et al (2009) OFD1 is mutated in X-linked Joubert syndrome and mutants with LCA5-encoded lebercilia. Am J Hum Genet 85:455–481

    Google Scholar 

  • Cohen I (1942) Agenesis of the cerebellum (verified by operation). J Mt Sinai Hosp 8:441–446

    Google Scholar 

  • Combettes M (1831) Absence complète du cervelet, des pédoncules postérieurs et la protubérance cérébrale chez une jeune fille mort dans sa onzième anneé. Bull Soc Anat Paris 5:148–157

    Google Scholar 

  • Costa C, Hauw J-J (1995) Pathology of the cerebellum, brain stem, and spinal cord. In: Duckett S (ed) Pediatric neuropathology. Williams & Wilkins, Baltimore, pp 217–238

    Google Scholar 

  • Dafinger C, Liebau MC, Elsayed SM, Hellenbroich Y, Boltshauser E, Korenke GL et al (2011) Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics. J Clin Invest 121:2662–2667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M et al (2001) The Sonic hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128:5201–5212

    CAS  PubMed  Google Scholar 

  • Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental, clinical, and pathological study. Am J Dis Child 8:406–482

    Google Scholar 

  • Danon O, Elmaleh M, Boukobza B, Fohlen M, Hadjnacer K, Hasan M (2000) Rhombencephalosynapsis diagnosed in childhood: clinical and MRI findings. Magn Reson Imaging 18:99–101

    CAS  PubMed  Google Scholar 

  • De Haene A (1955) Agénésie partielle du vermis du cervelet à caractère familial. Acta Neurol Belg 55:622–628

    Google Scholar 

  • de Koning TJ, de Vries LS, Groenendael F, Ruitenbeek W, Jansen GH, Poll-The BT, Barth PG (1999) Pontocerebellar hypoplasia associated with respiratory-chain defects. Neuropediatrics 30:93–95

    PubMed  Google Scholar 

  • Del Cerro MP, Snider RS (1969) The Purkinje cell cilium. Anat Rec 165:127–130

    PubMed  Google Scholar 

  • Del Cerro MP, Snider RS (1972) Studies on the developing cerebellum. II. The ultrastructure of the external granular layer. J Comp Neurol 144:131–164

    PubMed  Google Scholar 

  • Delous M, Baala L, Salomon R, Laclef C, Vierkotten J, Tory K et al (2007) The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat Genet 39:875–881

    CAS  PubMed  Google Scholar 

  • Deol MS (1964) The origin of the abnormalities of the inner ear in dreher mice. J Embryol Exp Morphol 12:727–733

    CAS  PubMed  Google Scholar 

  • Di Christofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355

    Google Scholar 

  • Dixon-Salazar T, Silhavy JL, Marsh SE, Louie CM, Scott LC, Gururaj A et al (2004) Mutations in the AHI1 gene, encoding Jouberin, cause Joubert syndrome with cortical polymicrogyria. Am J Hum Genet 75:979–987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty D (2009) Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 16:143–154

    PubMed  PubMed Central  Google Scholar 

  • Doherty DA, Levine D (2012) Prenatal cerebellar imaging. In: Boltshauser E, Schmahmann J (eds) Cerebellar disorders in children. Mac Keith, London, pp 79–93

    Google Scholar 

  • Doherty D, Parisi MA, Finn LS, Guncy-Aygun M, Al-Mateen M, Bates D et al (2010) Mutations in 3 genes (MKS3, CC2D2A and RGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet 47:8–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durmaz B, Wollnik B, Cogulu O, Li Y, Tekgul H, Hazan F, Ozkinay F (2009) Pontocerebellar hypoplasia type III (CLAM): extended phenotype and novel molecular findings. J Neurol 256:416–419

    CAS  PubMed  Google Scholar 

  • Edvardson S, Shang A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T et al (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81:857–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenman LM, Brothers R (1998) Rostral cerebellar malformation (rcm/rcm): a murine mutant to study regionalization of the cerebellum. J Comp Neurol 394:106–117

    CAS  PubMed  Google Scholar 

  • Eisenman LM, Gallagher E, Hawkes R (1998) Regionalization defects in the weaver mouse cerebellum. J Comp Neurol 394:431–444

    CAS  PubMed  Google Scholar 

  • Ellison DW (2010) Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol (Berl) 120:305–316

    Google Scholar 

  • Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G et al (2011) Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH.WNT molecular subgroups. Acta Neuropathol (Berl) 121:381–396

    CAS  Google Scholar 

  • Engelkamp D, Rashbass P, Seawright A, van Heyningen V (1999) Role of Pax6 in development of the cerebellar system. Development 126:3585–3596

    CAS  PubMed  Google Scholar 

  • Englund C, Kowalcyk T, Daza RAM, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195

    CAS  PubMed  Google Scholar 

  • Espinosa JS, Luo L (2008) Timing neurogenesis and differentiation: insights from quantitatie clonal analyses of cerebellar granule cells. J Neurosci 28:2301–2312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Essick CR (1912) The development of the nuclei pontis and the nucleus arcuatus in man. Am J Anat 13:25–54

    Google Scholar 

  • Falconer DS (1951) Two new mutants, ‘Trembler’ and ‘Reeler’, with neurological actions in the house mouse. J Genet 50:192–201

    CAS  PubMed  Google Scholar 

  • Farago AF, Awatramani RB, Dymecki SM (2006) assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    CAS  PubMed  Google Scholar 

  • Feirabend HKP (1983) Anatomy and development of longitudinal patterns in the architecture of the cerebellum of the White Leghorn (Gallus domesticus). University of Leiden, Thesis

    Google Scholar 

  • Feirabend HKP, Voogd J (1986) Myeloarchitecture of the cerebellum of the chicken (Gallus domesticus): an atlas of the compartmental subdivision of the cerebellar white matter. J Comp Neurol 251:44–66

    CAS  PubMed  Google Scholar 

  • Feirabend HKP, van Luxemburg EH, van Denderen-van DH, Voogd J (1985) A 3H-thymidine autoradiographic study of the development of the cerebellum of the white leghorn (Gallus domesticus): ‘Evidence’ for longitudinal neuroblast generation patterns? Acta Morphol Neerl Scand 23:115–126

    CAS  PubMed  Google Scholar 

  • Ferland RJ, Eyaid W, Collura RV, Tully LD, Hill RS, Al-Nouri D et al (2004) Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 36:1008–1013

    CAS  PubMed  Google Scholar 

  • Ferrer I, Galofre E, Soler T (1986) Structure of an isolated cerebellum and related nuclei developed within the matrix of a mature ovarian teratoma. Childs Nerv Syst 2:266–269

    CAS  PubMed  Google Scholar 

  • Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M et al (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076

    CAS  PubMed  Google Scholar 

  • Friede RL (1989) Developmental neuropathology, 2nd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Friede RL, Boltshauser E (1978) Uncommon syndromes of cerebellar vermis aplasia. I. Joubert syndrome. Dev Med Child Neurol 20:758–763

    CAS  PubMed  Google Scholar 

  • Garcia-Gonzalo FR, Corbit KC, Sirezol-Piquer MS, Ramaswami G, Otto EA, Noriega TR et al (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet 43:776–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner RJM, Coleman LT, Mitchell LA, Smith LJ, Harvey AS et al (2001) Near-total absence of the cerebellum. Neuropediatrics 32:62–68

    CAS  PubMed  Google Scholar 

  • Gibson P, Tong Y, Robinson G, Thompson MC, Currie DS, Eden C et al (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468:1095–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilthorpe JD, Papantoniou E-K, Chédotal A, Lumsden A, Wingate RJT (2002) The migration of cerebellar rhombic lip derivatives. Development 129:4719–4728

    CAS  PubMed  Google Scholar 

  • Glickstein M (1994) Cerebellar agenesis. Brain 117:1209–1212

    PubMed  Google Scholar 

  • Godfrey C, Foley AR, Clement E, Muntoni F (2011) Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 21:278–285

    CAS  PubMed  Google Scholar 

  • Goffinet AM (1983) The embryonic development of the inferior olivary complex in normal and reeler mutant mice. J Comp Neurol 219:10–24

    CAS  PubMed  Google Scholar 

  • Goffinet AM, So K-F, Yamamoto M, Edwards M, Caviness VS Jr (1984) Architectonic and hodological organization of the cerebellum in reeler mutant mice. Brain Res Dev Brain Res 16:263–276

    Google Scholar 

  • Goldowitz D, Hamre K (1998) The cells and molecules that make the cerebellum. Trends Neurosci 21:375–382

    CAS  PubMed  Google Scholar 

  • Gorden NT, Arts HH, Parisi MA, Coene KL, Letteboer SJ, van Beersum SE et al (2008) CCD2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. Am J Hum Genet 83:559–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goutières F, Aicardi J, Farkas E (1977) Anterior horn cell disease associated with pontocerebellar hypoplasia in infants. J Neurol Neurosurg Psychiatry 40:370–378

    PubMed  PubMed Central  Google Scholar 

  • Grinberg J, Northrup H, Ardinger H, Prasad C, Dobyns WB, Millen KJ (2004) Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat Genet 36:1053–1055

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Voogd J, Freedman SL (1979) The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol 183:551–602

    CAS  PubMed  Google Scholar 

  • Gross H, Hoff H (1959) Sur les dysraphies crâniocéphaliques. In: Heuyer G, Feld M, Gruner J (eds) Malformations congénitales du cerveau. Masson, Paris, pp 287–296

    Google Scholar 

  • Grunnet ML, Shields WD (1976) Cerebellar hemorrhage in the premature infant. J Pediatr 88:605–608

    CAS  PubMed  Google Scholar 

  • Habib M (2000) The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain 123:2373–2399

    PubMed  Google Scholar 

  • Hagberg BA, Blennow G, Kristiansson B, Stibler H (1993) Carbohydrate-deficient glycoprotein syndromes: a peculiar group of new disorders. Pediatr Neurol 9:255–262

    CAS  PubMed  Google Scholar 

  • Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, Fitzhugh W, Kusumi K et al (1996) Disruption of the nuclear hormone receptor RORα in staggerer mice. Nature 379:736–739

    CAS  PubMed  Google Scholar 

  • Hamre KM, Goldowitz D (1997) Meander tail acts intrinsic to granule cell precursors to disrupt cerebellar development: analysis of meander tail chimeric mice. Development 124:4201–4212

    CAS  PubMed  Google Scholar 

  • Hanaway J, Netsky MG (1971) Heterotopias of the inferior olive: relation to Dandy-Walker malformation and correlation with experimental data. J Neuropathol Exp Neurol 30:380–389

    CAS  PubMed  Google Scholar 

  • Hart HN, Malamud N, Ellis WG (1972) The Dandy-Walker syndrome. A clinicopathological study based on 28 cases. Neurology 22:771–780

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Mikoshiba K (2003) Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci 23:11342–11351

    CAS  PubMed  Google Scholar 

  • Hatten ME, Heintz N (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci 18:385–408

    CAS  PubMed  Google Scholar 

  • Hatten ME, Roussel MF (2011) Development and cancer of the cerebellum. Trends Neurosci 34:134–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatten ME, Alder J, Zimmerman K, Heintz N (1997) Genes involved in cerebellar cell specification and differentiation. Curr Opin Neurobiol 7:40–47

    CAS  PubMed  Google Scholar 

  • Hawkes R, Leclerc N (1987) Antigenic map of the rat cerebellar cortex: the distribution of sagittal bands as revealed by monoclonal anti-Purkinje cell antibody mabQ113. J Comp Neurol 256:29–41

    CAS  PubMed  Google Scholar 

  • Hawkes R, Colonnier M, Leclerc N (1985) Monoclonal antibodies reveal sagittal banding in the rodent cerebellar cortex. Brain Res 333:359–365

    CAS  PubMed  Google Scholar 

  • Herrup K (1983) Role of the staggerer gene in determining cell number in the cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Brain Res 11:267–274

    Google Scholar 

  • Herrup K, Kuemerle B (1997) The compartmentalization of the cerebellum. Annu Rev Neurosci 20:61–90

    CAS  PubMed  Google Scholar 

  • Herrup K, Mullen RJ (1979a) Regional variation and absence of large neurons in the cerebellum of the staggerer mouse. Brain Res 172:1–12

    CAS  PubMed  Google Scholar 

  • Herrup K, Mullen RJ (1979b) Staggerer chimeras: Intrinsic nature of Purkinje cell defects and implications for cerebellar development. Brain Res 178:443–457

    CAS  PubMed  Google Scholar 

  • Hess DT, Voogd J (1986) Chemoarchitectonic zonation of the monkey cerebellum. Brain Res 369:383–387

    CAS  PubMed  Google Scholar 

  • Hevner RF (2007) Progress on pontocerebellar hypoplasia. Acta Neuropathol (Berl) 114:401–402

    Google Scholar 

  • Hirano A, Dembitzer HB (1975) The fine structure of staggerer cerebellum. J Neuropathol Exp Neurol 34:1–11

    CAS  PubMed  Google Scholar 

  • His W (1890) Die Entwickelung des menschlichen Rautenhirns vom Ende des ersten bis zum Beginn des dritten Monats. I. Verlängertes Mark. Abh Kön Sächs Ges Wiss Math Phys Kl 29:1–74

    Google Scholar 

  • Ho KS, Scott MP (2002) Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr Opin Neurobiol 12:57–63

    CAS  PubMed  Google Scholar 

  • Hochstetter F (1929) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns, II. Teil, 3. Lieferung: Die Entwicklung des Mittel- und Rautenhirns. Deuticke, Vienna

    Google Scholar 

  • Hong SE, Shugari YY, Huang DT, Al Shahwan S, Grant PE, Hourihane JO et al (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:93–96

    CAS  PubMed  Google Scholar 

  • Hori A (2002) Normale und pathologische Entwicklung des Nervensystems. In: Peiffer J, Schröder JM, Paulus W (eds) Neuropathologie. Morphologische Diagnostik der Krankheiten des Nervensystems und der Skelettmuskulatur, 3rd edn. Springer, Berlin/Heidelberg/New York, pp 21–61

    Google Scholar 

  • Hori A, Peiffer J, Pfeiffer RA, Iizuka R (1980) Cerebello-cortical heterotopia in dentate nucleus, and other microdysgeneses in trisomy D1 (Patau) syndrome. Brain Dev 2:345–352

    CAS  PubMed  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV et al (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213

    CAS  PubMed  Google Scholar 

  • Ishak GE, Dempsey JC, Shaw DWW, Tully H, Adam MP, Sanchez-Lara PA et al (2012) Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain 135:1370–1386

    PubMed  PubMed Central  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Jaeken J, Carchon H (2000) What’s new in congenital disorders of glycosylation? Eur J Paediatr Neurol 4:163–167

    CAS  PubMed  Google Scholar 

  • Jaeken J, Casaer P (1997) Carbohydrate-deficient glycoconjugate (CDG) syndromes: a new chapter of neuropediatrics. Eur J Paediatr Neurol 1:61–66

    CAS  PubMed  Google Scholar 

  • Jaeken J, Hennet T, Matthijs G, Freeze HH (2009) CDG nomenclature: time for a change. Biochim Biophys Acta 1792:825–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakob A (1928) Das Kleinhirn. In: von Möllendorf W (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol 4, Teil 1. Springer, Berlin/Heidelberg/New York, pp 674–916

    Google Scholar 

  • Jensen P, Smeyne R, Goldowitz D (2004) Analysis of cerebellar development in math1 null embryos and chimeras. J Neurosci 24:2202–2211

    CAS  PubMed  Google Scholar 

  • Jissendi-Tchofo P, Doherty D, McGillivray G, Hevner R, Shaw D, Ishak G et al (2009) Pontine tegmental cap dysplasia: MR imaging and diffusion tensor imaging features of impaired navigation. AJNR Am J Neuroradiol 30:113–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joubert M, Eisenring J-J, Robb JP, Andermann F (1969) Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 19:813–825

    CAS  PubMed  Google Scholar 

  • Juric-Sekhar G, Adkins J, Doherty D, Hevner RF (2012) Joubert syndrome: brain and spinal cord malformations in genotyped cases and implications for neurodevelopmental functions of primary cilia. Acta Neuropathol (Berl) 123:695–709

    Google Scholar 

  • Kagotani Y, Takao K, Nomura K, Imai Y, Hashimoto K (1996) Intraorbital cerebellar heterotopia associated with Chiari I malformation. J Pediatr Ophthalmol Strabismus 33:262–265

    CAS  PubMed  Google Scholar 

  • Kappel RM (1981) The development of the cerebellum in Macaca mulatta. A study of regional differences during corticogenesis. Thesis, University of Leiden

    Google Scholar 

  • Kaufmann WE, Cooper K, Mostofsky SH, Capone GT, Kates WR, Newschaffer CJ et al (2003) Specificity of cerebellar vermian abnormalities in autism: a quantitative magnetic resonance imaging study. J Child Neurol 18:463–470

    PubMed  Google Scholar 

  • Keir G, Winchester BG, Clayton P (1999) Carbohydrate-deficient glycoprotein syndromes: inborn errors of protein glycosylation. Ann Clin Biochem 36:20–36

    CAS  PubMed  Google Scholar 

  • Kendall B, Kingsley D, Lambert SR, Taylor D, Finn P (1990) Joubert syndrome: a clinico-radiological study. Neuroradiology 31:502–506

    CAS  PubMed  Google Scholar 

  • Kollias SS, Ball WS (1997) Congenital malformations of the brain. In: Ball WS (ed) Pediatric neuroradiology. Lippincott-Raven, Philadelphia, pp 91–174

    Google Scholar 

  • Korneliussen HK (1968) Comments on the cerebellum and its division. Brain Res 8:229–236

    CAS  PubMed  Google Scholar 

  • Kudryk ET, Coleman JM, Murtagh FR, Arrington JA, Silbiger ML (1991) MR imaging of an extreme case of cerebellar ectopia in a patient with Chiari II malformation. AJNR Am J Neuroradiol 12:705–706

    CAS  PubMed  Google Scholar 

  • Kuemerle B, Zanjani H, Joyner A, Herrup K (1997) Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J Neurosci 17:7881–7889

    CAS  PubMed  Google Scholar 

  • Kuhar SG, Feng L, Vidan S, Ross ME, Hatten ME, Heintz N (1993) Changing patterns of gene expression define granule neuron differentiation. Development 117:97–104

    CAS  PubMed  Google Scholar 

  • Kumar M, Melton D (2003) Pancreas specification: a budding question. Curr Opin Genet Dev 13:401–407

    CAS  PubMed  Google Scholar 

  • Kumar AJ, Naidich TP, Stetter G (1992) Chromosomal disorders: background and neuroradiology. AJNR Am J Neuroradiol 13:577–593

    CAS  PubMed  Google Scholar 

  • Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ et al (2001) Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet 29:404–411

    CAS  PubMed  Google Scholar 

  • Kyriakopoulou K, de Diego I, Wassef M, Karagogeos D (2002) A combination of chain and neurophilic migration involving the adhesion molecule TAG-1 in the caudal medulla. Development 129:287–296

    CAS  PubMed  Google Scholar 

  • Lambert SR, Kriss A, Gresty M, Benton S, Taylor D (1989) Joubert syndrome. Arch Ophthalmol 107:709–713

    CAS  PubMed  Google Scholar 

  • Landis S (1973) Ultrastructural changes in the mitochondria of cerebellar Purkinje cells of nervous mutant mice. J Cell Biol 57:782–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landis S, Mullen RJ (1978) The development and degeneration of Purkinje cells in pcd mutant mice. J Comp Neurol 177:125–143

    CAS  PubMed  Google Scholar 

  • Landis DMD, Reese TS (1977) Structure of the Purkinje cell membrane in staggerer and weaver mutant mice. J Comp Neurol 171:247–260

    CAS  PubMed  Google Scholar 

  • Landis DMD, Sidman RL (1978) Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol 179:831–864

    CAS  PubMed  Google Scholar 

  • Landsberg RL, Awatrami RB, Hunter NL, Farago A, Di Pietrantonio HJ, Rodriguez CI, Dymecki SM (2005) Hindbrain rhombic lip is compromized of discrete progenitor cell populations allocated by Pax6. Neuron 48:933–947

    CAS  PubMed  Google Scholar 

  • Lane PW (1964) Personal communication. Mouse News Lett 30:32

    Google Scholar 

  • Lane PW (1970) [Swaying, sw, linkage]. Mouse News Lett 36:40

    Google Scholar 

  • Lane PW, Bronson RT, Spencer CA (1992) Rostral cerebellar malformation (rcm/rcm): a new recessive mutation on chromosome 3 of the mouse. J Hered 83:315–318

    CAS  PubMed  Google Scholar 

  • Leclerc N, Doré L, Parent A, Hawkes R (1990) The compartmentalization of the monkey and rat cerebellar cortex: Zebrin I and cytochrome oxidase. Brain Res 506:70–78

    CAS  PubMed  Google Scholar 

  • Lee JE, Gleeson JG (2011) Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr Opin Neurobiol 24:98–105

    Google Scholar 

  • Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294

    CAS  PubMed  Google Scholar 

  • Lemire RJ, Loeser JD, Leech RW, Alvord EC (1975) Normal and abnormal development of the human nervous system. Harper & Row, Hagerstown

    Google Scholar 

  • Leroy JG, Lyon G, Fallet C, Amiel J, De Praeter C, Van Den Broecke C, Vanhaesebrouck P (2007) Congenital pontocerebellar atrophy and telencephalic defects in three siblings: a new subtype. Acta Neuropathol (Berl) 114:387–399

    Google Scholar 

  • Leto K, Calretti B, Williams IM, Magrassi L, Rossi F (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 26:11682–11694

    CAS  PubMed  Google Scholar 

  • Lhermitte J, Duclos P (1920) Sur un ganglioneurome diffuse du cortex du cervelet. Bull Assoc Franç Etude Cancer 9:99–107

    Google Scholar 

  • Lin Y, Chen L, Lin C, Luo Y, Tsai RY, Wang F (2009) Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum. Dev Biol 329:44–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Li H, Hu X, Yu L, Liu H, Han R et al (2008) Control of precerebellar neuron development by Olig3 bHLH transcription factor. J Neurosci 28:10124–10133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Zhang Z, Liu X, Teng G, Meng H, Yu T et al (2011) Development of the human fetal cerebellum in the second trimester: a post mortem magnetic resonance imaging evaluation. J Anat 219:582–588

    PubMed  PubMed Central  Google Scholar 

  • Lloyd K, Dennis M (1963) Cowden’s disease: a possible new symptom complex with multiple system involvement. Ann Intern Med 58:136–142

    PubMed  Google Scholar 

  • Louvi A, Alexandre P, Métin C, Wurst W, Wassef M (2003) The isthmic neuroepithelium is essential for cerebellar midline fusion. Development 130:5319–5330

    CAS  PubMed  Google Scholar 

  • Lyon MF (1961) Linkage relations and some pleiotropic effects of the dreher mutant of the house mouse. Genet Res 2:92–95

    Google Scholar 

  • Maat GJR (1981) Histogenetic aspects of the cerebellar cortex in man. Acta Morphol Neerl Scand 19:82–83

    Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic lip neural progenitors. Neuron 48:17–24

    CAS  PubMed  Google Scholar 

  • Manzanares M, Trainor PA, Ariza-McNaughton L, Nonchev S, Krumlauf R (2000) Dorsal patterning defects in the hindbrain, roof plate and skeleton in the dreher [dr(J)] mouse mutant. Mech Dev 94:147–156

    CAS  PubMed  Google Scholar 

  • Marani E (1982) Topographic enzyme histochemistry of the mammalian cerebellum: 5’-nucleotidase and acetylcholinesterase. Thesis, University of Leiden

    Google Scholar 

  • Marani E, Voogd J (1977) An acetylcholinesterase band pattern in the molecular layer of the cat cerebellum. J Anat 124:335–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maria BL, Quisling RG, Rosainz LC, Yachnis AT, Gitten JC, Dede DE, Fennell E (1999a) Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol 14:368–376

    CAS  PubMed  Google Scholar 

  • Maria BL, Boltshauser E, Palmer SC, Tran TX (1999b) Clinical features and revised diagnostic criteria in Joubert syndrome. J Child Neurol 14:583–591

    CAS  PubMed  Google Scholar 

  • Mariani J, Crepel F, Mikoshiba K, Changeux J-P, Sotelo C (1977) Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse. Phil Trans R Soc Lond 281:1–28

    CAS  Google Scholar 

  • Maricich SM, Aqeeb KA, Moayedi Y, Mathes EL, Patel MS, Chitayat D et al (2011) Pontocerebellar hypoplasia: review of classification and genetics, and exclusion of several genes known to be important for cerebellar development. J Child Neurol 26:288–294

    PubMed  Google Scholar 

  • Mariën P, Engelborghs S, De Deyn PP (2001) Cerebellar neurocognition: a new avenue. Acta Neurol Belg 101:96–109

    PubMed  Google Scholar 

  • Marino S, Krimperfort P, Leung C, van der Korput HAGM, Trapman J, Camenisch I et al (2002) PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum. Development 129:3513–3530

    CAS  PubMed  Google Scholar 

  • Marín-Padilla M (1985) Neurogenesis of the climbing fibers in the human cerebellum: a Golgi study. J Comp Neurol 235:82–96

    PubMed  Google Scholar 

  • Marti E, Bovolenta P (2002) Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci 25:89–96

    CAS  PubMed  Google Scholar 

  • Mastick GS, Fan C-M, Tessier-Lavigne M, Serbedzija GN, McMahon AP, Easter SS Jr (1996) Early detection of neuromeres in Wnt-1−/− mutant mice: evaluation by morphological and molecular markers. J Comp Neurol 374:246–258

    CAS  PubMed  Google Scholar 

  • Matthijs G, Schollen E, Pardon E, Veiga-Da Cunha M, Jaeken J, Cassiman JJ, Van Schaftingen E (1997) Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet 16:88–92

    CAS  PubMed  Google Scholar 

  • McMahon AP, Joyner AL, Bradley A, McMahon JA (1992) The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69:581–595

    CAS  PubMed  Google Scholar 

  • Meier H, MacPike AD (1971) Three syndromes produced by two mutant genes in the mouse. J Hered 62:297–302

    CAS  PubMed  Google Scholar 

  • Mester J, Eng C (2013) When overgrowth bumps into cancer. Am J Med Genet C Semin Med Genet 163C:114–121

    PubMed  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1998) Special issue: cerebellum. Trends Neurosci 21:367–419; Trends Cogn Sci 2:313–371

    CAS  PubMed  Google Scholar 

  • Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18:12–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millen KJ, Wurst W, Herrup K, Joyner AL (1994) Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 120:695–706

    CAS  PubMed  Google Scholar 

  • Millen KJ, Hui CC, Joyner AL (1995) A role for En-2 and other murine homologues of Drosophila segment polarity genes in regulating positional information in the developing cerebellum. Development 121:3935–3945

    CAS  PubMed  Google Scholar 

  • Millen KJ, Millonig JH, Wingate RJT, Alder J, Hatten ME (1999) Neurogenetics of the cerebellar system. J Child Neurol 14:574–582

    CAS  PubMed  Google Scholar 

  • Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769

    CAS  PubMed  Google Scholar 

  • Milosevic A, Zecevic N (1998) Developmental changes in human cerebellum: expression of intracellular calcium receptors, calcium-binding proteins, and phosphorylated and nonphosphorylated neurofilament protein. J Comp Neurol 396:442–460

    CAS  PubMed  Google Scholar 

  • Mishima Y, Lindgren AG, Chizhikov VV, Johnson RL, Millen KJ (2009) Overlapping function of Lmx1a and Lmx1b in anterior hindbrain roof plate formation and cerebellar growth. J Neurosci 29:11377–11384

    CAS  PubMed  Google Scholar 

  • Miyata M, Miyata H, Mikoshiba K, Ohama E (1999) Development of Purkinje cells in humans: an immunohistochemical study using a monoclonal antibody against the inositol 1,4,5-triphosphate type 1 receptor (IP3R1). Acta Neuropathol (Berl) 98:226–232

    CAS  Google Scholar 

  • Mullen RJ, LaVail MM (1975) Two new types of retinal degeneration in cerebellar mutant mice. Nature 258:528–530

    CAS  PubMed  Google Scholar 

  • Mullen RJ, Eicher EM, Sidman RL (1976) Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci U S A 73:208–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mullen RJ, Hamre KM, Goldowitz D (1997) Cerebellar mutant mice and chimeras revisited. Perspect Dev Neurobiol 5:43–55

    CAS  PubMed  Google Scholar 

  • Murofushi K (1974) Normalentwicklung und Dysgenesien von Dentatum und Oliva Inferior. Acta Neuropathol (Berl) 27:317–328

    CAS  Google Scholar 

  • Nicolson RI, Fawcett AJ, Dean P (2001) A TINS debate – Hindbrain versus forebrain: a case for cerebellar deficit in developmental dyslexia. Trends Neurosci 24:508–516

    CAS  PubMed  Google Scholar 

  • Norman RM (1940) Primary degeneration of the granular layer of the cerebellum: an unusual form of familial cerebellar atrophy occurring in early life. Brain 63:365–379

    Google Scholar 

  • Norman RM (1961) Cerebellar hypoplasia in Werdnig-Hoffmann disease. Arch Dis Child 36:91–101

    Google Scholar 

  • Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskitt KJ (1995) Congenital malformations of the brain. Pathological, embryological, clinical, radiological and genetic aspects. Oxford University Press, New York

    Google Scholar 

  • Nyberg DA, Mahony BS, Hegge FN, Hickok D, Luthy DA, Kapur R (1991) Enlarged cisterna magna and the Dandy-Walker malformations: factors associated with chromosome abnormalities. Obstet Gynecol 77:436–442

    CAS  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (2001) Human embryology and teratology, 3rd edn. Wiley-Liss, New York

    Google Scholar 

  • Oberdick J, Baader SL, Schilling K (1998) From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci 21:383–390

    CAS  PubMed  Google Scholar 

  • Obersteiner H (1914) Ein Kleinhirn ohne Wurm. Arb Neurol Inst (Wien) 21:124–136

    Google Scholar 

  • Osborn AG (1994) Diagnostic neuroradiology. Mosby, St. Louis

    Google Scholar 

  • Oscarsson O (1980) Functional organization of olivary projections to the cerebellar anterior lobe. In: Courville J (ed) The inferior olivary nucleus, anatomy and physiology. Raven, New York, pp 279–289

    Google Scholar 

  • Padberg GW, Schot JD, Vielvoye GJ, Bots GT, de Beer FC (1991) Lhermitte-Duclos disease and Cowden’s disease: a single phakomatosis. Ann Neurol 29:517–523

    CAS  PubMed  Google Scholar 

  • Parisi MA, Dobyns WB (2003) Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80:36–53

    CAS  PubMed  Google Scholar 

  • Park S-H, Becker-Catania S, Gatti RA, Crandall BF, Emelin JK, Vinters HV (1998) Congenital olivopontocerebellar atrophy: report of two siblings with paleo- and neocerebellar atrophy. Acta Neuropathol (Berl) 96:315–321

    CAS  Google Scholar 

  • Pascual M, Abasolo I, Mingorance–Le Meur A, Martinez A, Del Rio JA, Wright CV et al (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A 104:5193–5198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual-Castroviejo I (2002) Congenital disorders of glycosylation syndromes. Dev Med Child Neurol 44:357–358

    PubMed  Google Scholar 

  • Pascual-Castroviejo I, Velez A, Pascual-Pascual S-I, Roche MC, Villarejo F (1991) Dandy-Walker malformation: an analysis of 38 cases. Childs Nerv Syst 7:88–97

    CAS  PubMed  Google Scholar 

  • Pascual-Castroviejo I, Gutierrez M, Morales C, Gonzalez-Mediero I, Martínez-Bermejo A, Pascual-Pascual S-I (1994) Primary degeneration of the granular layer of the cerebellum. A study of 14 patients and review of the literature. Neuropediatrics 25:183–190

    CAS  PubMed  Google Scholar 

  • Pascual-Castroviejo I, Pascual-Pascual SI, Gutierrez-Molina M, Urich H, Katsetos CD (2003) Cerebellar hypoplasia with heterotopic Purkinje cells in the molecular layer and preservation of the granule layers associated with severe encephalopathy. A new entity? Neuropediatrics 34:160–164

    CAS  PubMed  Google Scholar 

  • Pasquier L, Marcorelles P, Loget F, Pelluard F, Carles D, Perez M-J et al (2009) Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol (Berl) 117:185–200

    Google Scholar 

  • Patel MS, Becker LE, Toi A, Armstrong DL, Chitayat D (2006) Severe, fetal-onset form of olivopontocerebellar hypoplasia in three sibs: pontocerebellar hypoplasia type 5? Am J Med Genet A 140A:594–603

    Google Scholar 

  • Peiffer J, Pfeiffer RA (1977) Hypoplasia ponto-neocerebellaris. J Neurol 215:241–251

    CAS  PubMed  Google Scholar 

  • Peters V, Penzien JM, Reiter G, Körner C, Hackler R, Assmann B et al (2002) Congenital disorder of glycosylation IId (CDG-IId) – a new entity: clinical presentation with Dandy-Walker malformation and myopathy. Neuropediatrics 33:27–32

    CAS  PubMed  Google Scholar 

  • Philip N, Chabrol B, Lossi AM, Cardoso C, Guerrini R, Dobyns WB et al (2003) Mutations in the oligophrenin-1 gene (OPHN1) cause X-linked congenital cerebellar hypoplasia. J Med Genet 40:441–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips RJS (1960) “Lurcher”. A new gene in linkage group XI of the house mouse. J Genet 57:35–42

    Google Scholar 

  • Pilu G, Visentin B, Valeri B (2000) The Dandy-Walker complex and fetal sonography. Ultrasound Obstet Gynecol 16:115–117

    CAS  PubMed  Google Scholar 

  • Plioplys AV, Thibault J, Hawkes R (1985) Selective staining of a subset of Purkinje cells in the human cerebellum with monoclonal antibody mabQ113. J Neurol Sci 70:245–256

    CAS  PubMed  Google Scholar 

  • Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM et al (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96:1563–1568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pooh RK (2009) Neuroscan of congenital brain abnormality. In: Pooh RK, Kurjak A (eds) Fetal neurology. Jaypee, St. Louis, pp 59–139

    Google Scholar 

  • Poretti A, Boltshauser E (2012) Rhombencephalosynapsis and Gómez-López-Hernandez syndrome. In: Boltshauser E, Schmahmann JD (eds) Cerebellar disorders in children. Mac Keith, London, pp 184–191

    Google Scholar 

  • Poretti A, Boltshauser E, Loenneker T, Valente EM, Brancati F, Il’Yasov K, Huisman TAGM (2007) Diffusion tensor imaging in Joubert syndrome. AJNR Am J Neuroradiol 28:1929–1933

    CAS  PubMed  Google Scholar 

  • Poretti A, Prayer D, Boltshauser E (2009) Morphological spectrum of prenatal cerebellar disruptions. Eur J Paediatr Neurol 13:397–407

    PubMed  Google Scholar 

  • Poretti A, Boltshauser E, Schmahmann JD (2012) Cerebellar agenesis. In: Boltshauser E, Schmahmann JD (eds) Cerebellar disorders in children. Mac Keith, London, pp 117–121

    Google Scholar 

  • Przyborski SA, Knowles BB, Ackerman SL (1998) Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary. Development 125:41–50

    CAS  PubMed  Google Scholar 

  • Puelles L, Martínez S, Martínez de la Torre M (2008) Neuroanatomía. Edit Med Panamericana. Buenos Aires, Madrid (in Spanish)

    Google Scholar 

  • Putoux A, Thomas S, Coene KL, Davis EE, Alanay Y, Ogur G et al (2011) KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet 43:601–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajab A, Mochida GH, Hill A, Ganesh V, Bodell A, Riaz A et al (2003) A novel form of pontocerebellar hypoplasia maps to chromosome 7q11-21. Neurology 60:1664–1667

    CAS  PubMed  Google Scholar 

  • Rakic P (1976) Synaptic specificity in the cerebellar cortex: Study of anomalous circuits induced by single gene mutations in mice. Cold Spring Harb Symp Quant Biol 40:333–346

    CAS  PubMed  Google Scholar 

  • Rakic P, Sidman RL (1970) Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol 139:473–500

    CAS  PubMed  Google Scholar 

  • Rakic P, Sidman RL (1973a) Sequence of developmental abnormalities leading to granule cell deficits in cerebellar cortex of weaver mutant mice. J Comp Neurol 152:103–132

    CAS  PubMed  Google Scholar 

  • Rakic P, Sidman RL (1973b) Organization of cerebellar cortex secondary to deficits of granule cells in weaver mutant mice. J Comp Neurol 152:133–162

    CAS  PubMed  Google Scholar 

  • Rakic P, Sidman RL (1973c) Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci U S A 70:240–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaeckers VT (2000) Cerebellar malformations. In: Klockgether T (ed) Handbook of ataxia disorders. Dekker, New York, pp 115–150

    Google Scholar 

  • Ramaeckers VT, Heimann G, Reul J, Thron A, Jaeken J (1997) Genetic disorders and cerebellar structural abnormalities in childhood. Brain 120:1739–1751

    Google Scholar 

  • Ray RS, Dymecki SM (2009) Rautenlippe Redux – toward a unified view of the precerebellar rhombic lip. Curr Opin Cell Biol 21:741–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezai Z, Yoon CH (1972) Abnormal rate of granule cell migration in the cerebellum of “weaver” mutant mice. Dev Biol 29:17–26

    CAS  PubMed  Google Scholar 

  • Rhinn M, Brand M (2001) The midbrain-hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42

    CAS  PubMed  Google Scholar 

  • Rodriguez CI, Dymecki SM (2000) Origin of the precerebellar system. Neuron 27:475–486

    CAS  PubMed  Google Scholar 

  • Rorke LB, Fogelson MH, Riggs HE (1968) Cerebellar heterotopia in infancy. Dev Med Child Neurol 10:644–650

    CAS  PubMed  Google Scholar 

  • Rosario CM, Yandava BD, Kosara B, Kosaras B, Zurakowski D, Sidman RL (1997) Differentiation of engrailed multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development 124:4213–4224

    CAS  PubMed  Google Scholar 

  • Ross ME, Fletcher C, Mason CA, Hatten ME, Heintz N (1989) Meander tail reveals a discrete developmental unit in the mouse cerebellum. Proc Natl Acad Sci U S A 87:4189–4192

    Google Scholar 

  • Rudnik-Schönborn S, Sztriha L, Aithala GR, Houge G, Laegneid LM, Seeger J et al (2003) Extended phenotype of pontocerebellar hypoplasia with infantile spinal muscular atrophy. Am J Med Genet A 117A:10–17

    Google Scholar 

  • Saleem SN, Zaki MS (2010) Role of MR imaging in prenatal diagnosis of pregnancies at risk for Joubert syndrome and related cerebellar disorders. AJNR Am J Neuroradiol 31:424–429

    CAS  PubMed  Google Scholar 

  • Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA et al (2011) Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145:513–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saraiva JM, Baraitser M (1992) Joubert syndrome: a review. Am J Med Genet 43:726–731

    CAS  PubMed  Google Scholar 

  • Sarnat HB (2000) Molecular genetic classification of central nervous system malformations. J Child Neurol 15:675–687

    CAS  PubMed  Google Scholar 

  • Sarnat HB, Alcalá H (1980) Human cerebellar hypoplasia – a syndrome of diverse causes. Arch Neurol 37:300–305

    CAS  PubMed  Google Scholar 

  • Sarnat HB, de Mello DE, Blair JD, Siddiqui SY (1982) Heterotopic growth of dysplastic cerebellum in frontal encephalocele in an infant of a diabetic mother. Can J Neurol Sci 9:31–35

    CAS  PubMed  Google Scholar 

  • Sarnat HB, Benjamin DR, Siebert JR, Kletter GB, Cheyette SR (2002) Agenesis of the mesencephalon and metencephalon with cerebellar hypoplasia: putative mutation in the EN2 gene – report of two cases in early infancy. Pediatr Dev Pathol 5:54–68

    PubMed  Google Scholar 

  • Sato T, Joyner AL, Nakamura H (2004) How does Fgf signaling from the isthmic organizer induce midbrain and cerebellum development? Dev Growth Differ 46:487–494

    CAS  PubMed  Google Scholar 

  • Sattar S, Gleeson JG (2011) The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol 53:793–798

    PubMed  PubMed Central  Google Scholar 

  • Saul SM, Brzezinski JA, Altschuler RA, Shore SE, Rudolph DD, Kabara LL et al (2008) Math5 expression and function in the central auditory system. Mol Cell Neurosci 37:153–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sayer JA, Otto EA, O’Toole JF, Nurnberg G, Kennedy MA, Becker C et al (2006) The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 38:674–681

    CAS  PubMed  Google Scholar 

  • Schachenmayr W, Friede RL (1982) Rhombencephalosynapsis: a Viennese malformation? Dev Med Child Neurol 24:178–182

    CAS  PubMed  Google Scholar 

  • Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    PubMed  Google Scholar 

  • Scott TG (1964) A unique pattern of localization within the cerebellum of the mouse. J Comp Neurol 122:1–8

    Google Scholar 

  • Sekiguchi M, Shimai K, Guo H, Nowakowski RS (1992) Cytoarchitectonic abnormalities in hippocampal formation and cerebellum of dreher mutant mouse. Brain Res Dev Brain Res 67:105–112

    CAS  PubMed  Google Scholar 

  • Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C et al (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305

    CAS  PubMed  Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45:27–40

    CAS  PubMed  Google Scholar 

  • Sidman RL (1968) Development of interneuronal connections in brains of mutant mice. In: Carlson FD (ed) Physiological and biochemical aspects of nervous integration. Prentice-Hall, Englewood-Cliffs, pp 163–193

    Google Scholar 

  • Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Thomas, Springfield, pp 3–145

    Google Scholar 

  • Sidman RL, Lane PW, Dickie MM (1962) Staggerer, a new mutation in the mouse affecting the cerebellum. Science 137:610–612

    CAS  PubMed  Google Scholar 

  • Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577

    CAS  PubMed  Google Scholar 

  • Sotelo C (1975a) Dendritic abnormalities of Purkinje cells in cerebellum of neurological mutant mice (weaver and staggerer). Adv Neurol 12:335–351

    CAS  PubMed  Google Scholar 

  • Sotelo C (1975b) Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res 94:19–44

    CAS  PubMed  Google Scholar 

  • Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295–339

    CAS  PubMed  Google Scholar 

  • Steinlin M, Klein A, Haas-Lude K, Zafeiriou D, Strozzi S, Muller T et al (2007) Pontocerebellar hypoplasia type 2: variability in clinical and imaging findings. Eur J Paediatr Neurol 11:146–152

    PubMed  Google Scholar 

  • Sternberg L (1912) Ueber vollständigen Defekt des Kleinhirnes. Verhandl Deutsch Path Gesellsch 15:353–359

    Google Scholar 

  • Stibler H, Jaeken J (1990) Carbohydrate-deficient serum transferrin in a new systemic hereditary syndrome. Arch Dis Child 65:107–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stibler H, Westerberg B, Hanefeld F, Hagberg B (1993) Carbohydrate-deficient glycoprotein (CDG) syndrome – a new variant, type III. Neuropediatrics 24:51–52

    CAS  PubMed  Google Scholar 

  • Storm R, Cholewa-Waclaw J, Reuter K, Bröhl D, Sieber M, Treier M et al (2009) The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development 136:295–305

    CAS  PubMed  Google Scholar 

  • Streeter GL (1912) The development of the nervous system. In: Keibel F, Mall FP (eds) Manual of human embryology, vol 2. Lippincott, Philadelphia, pp 1–156

    Google Scholar 

  • Swisher DA, Wilson DB (1977) Cerebellar histogenesis in the Lurcher (Lc) mutant mouse. J Comp Neurol 173:205–218

    CAS  PubMed  Google Scholar 

  • Taber Pierce E (1967) Histogenesis of the dorsal and ventral cochlear nuclei in the mouse. An autoradiographic study. J Comp Neurol 131:27–54

    Google Scholar 

  • Taber Pierce E (1975) Histogenesis of the deep cerebellar nuclei in the mouse: an autoradiographic study. Brain Res 95:503–518

    Google Scholar 

  • Taggart JK, Walker AE (1942) Congenital atresia of the foramens of Luschka and Magendie. Arch Neurol Psychiatry 48:583–612

    Google Scholar 

  • Takhtani D, Melhem ER, Carson BS (2000) A heterotopic cerebellum presenting as a suprasellar mass with associated nasopharyngeal teratoma. AJNR Am J Neuroradiol 21:1119–1121

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Ogasawara Y, Miyakawa K, Murofushi K (1976) A neuropathological study on two autopsy cases of congenital hydrocephalus, with special reference to morphogenesis concerning micropolygyria of the dentate nucleus. No To Hattatsu 8:137–144 (in Japanese)

    Google Scholar 

  • ten Donkelaar HJ, Lammens M (2009) Development of the human cerebellum and its disorders. Clin Perinatol 36:513–530

    PubMed  Google Scholar 

  • ten Donkelaar HJ, Hoevenaars F, Wesseling P (2000) A case of Joubert’s syndrome with extensive cerebral malformations. Clin Neuropathol 19:85–93

    PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HOM, Renier WO (2003) Development and developmental disorders of the human cerebellum. J Neurol 250:1025–1036

    PubMed  Google Scholar 

  • Tissir F, Giffinet A (2003) Reelin and brain development. Nat Rev Neurosci 4:496–505

    CAS  PubMed  Google Scholar 

  • Toelle SP, Yalcinkaya C, Kocer N, Deonna T, Overweg-Plandsoen WCG, Bast T et al (2002) Rhombencephalosynapsis: clinical findings and neuroimaging in 9 children. Neuropediatrics 33:209–214

    CAS  PubMed  Google Scholar 

  • Truwitt CL, Barkovich AJ, Shanahan R, Maroldo TV (1991) MR imaging of rhombencephalosynapsis. J Comput Assist Tomogr 17:211–214

    Google Scholar 

  • Utsunomiya H, Takano K, Ogasawara T, Hashimoto T, Fukushoma T, Okazaki M (1998) Rhombencephalosynapsis: cerebellar embryogenesis. AJNR Am J Neuroradiol 19:547–549

    CAS  PubMed  Google Scholar 

  • Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR, Castori M et al (2006) Mutations in CEP290, which encodes a centrosomal protein, causes pleiotropic forms of Joubert syndrome. Nat Genet 38:623–625

    CAS  PubMed  Google Scholar 

  • Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Jl S, Branceti F et al (2010) Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet 42:619–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • van de Voort MRMJ (1960) De ontwikkeling van de ruitlijst bij de witte rat. Thesis, University of Nijmegen

    Google Scholar 

  • Voeller KKS (2004) Dyslexia. J Child Neurol 19:740–744

    PubMed  Google Scholar 

  • Voit T, Cohn RD, Sperner J, Sorokin L, Toda T, Herrmann R (1999) Merosin-positive congenital muscular dystrophy with transient brain dysmyelination, pontocerebellar hypoplasia and mental retardation. Neuromuscul Disord 9:95–101

    CAS  PubMed  Google Scholar 

  • Volpe JJ (2008) Neurology of the newborn, 5th edn. Elsevier, Philadelphia

    Google Scholar 

  • Volpe JJ (2009) Cerebellum of the premature infant: rapidly developing vulnerable, clinically important. J Child Neurol 24:1085–1104

    PubMed  PubMed Central  Google Scholar 

  • Voogd J (1967) Comparative aspects of the structure and fibre connexions of the mammalian cerebellum. Prog Brain Res 25:94–134

    CAS  PubMed  Google Scholar 

  • Voogd J (1992) The morphology of the cerebellum the last 25 years. Eur J Morphol 30:81–96

    CAS  PubMed  Google Scholar 

  • Voogd J (1995) The cerebellum. In: Williams PL et al (eds) Gray’s anatomy, 38th edn. Churchill Livingstone, Edinburgh, pp 1027–1064

    Google Scholar 

  • Voogd J (2003) The human cerebellum. J Chem Neuroanat 26:243–252

    PubMed  Google Scholar 

  • Voogd J (2004) Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 321–392

    Google Scholar 

  • Voogd J, Bigaré F (1980) Topographical distribution of olivary and cortico nuclear fibers in the cerebellum: a review. In: Courville J et al (eds) The inferior olivary nucleus: anatomy and physiology. Raven, New York, pp 207–234

    Google Scholar 

  • Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21:370–375

    CAS  PubMed  Google Scholar 

  • Voogd J, Ruigrok TJH (2012) Cerebellum and precerebellar nuclei. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 471–545

    Google Scholar 

  • Voogd J, Feirabend HKP, Schoen JHR (1990) Cerebellum and precerebellar nuclei. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 321–386

    Google Scholar 

  • Voogd J, Jaarsma D, Marani E (1996) The cerebellum: chemoarchitecture and anatomy. In: Swanson LW, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 12, Integrated systems of the CNS, Part III. Elsevier, Amsterdam, pp 1–369

    Google Scholar 

  • Wahlsten D, Lyons JP, Zagaja W (1983) Four dominant autosomal mutations affecting skin and hair development in the mouse. J Hered 74:421–425

    Google Scholar 

  • Waimey KE, Sajan SA, Millen KJ (2012) Cerebellar development. In: Boltshauser E, Schmahmann J (eds) Cerebellar disorders in children. Mac Keith, London, pp 3–19

    Google Scholar 

  • Wakeling EL, Jolly M, Fisk NM, Gannon C, Holder SE (2002) X-linked inheritance of Dandy-Walker variant. Clin Dysmorphol 11:15–18

    PubMed  Google Scholar 

  • Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484–491

    CAS  PubMed  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    CAS  PubMed  Google Scholar 

  • Washburn LL, Eicher EM (1986) A new mutation at the dreher locus (drzJ). Mouse News Lett 75:28–29

    Google Scholar 

  • Wassef M, Joyner AL (1997) Early mesencephalon/metencephalon patterning and development of the cerebellum. Perspect Dev Neurobiol 5:3–16

    CAS  PubMed  Google Scholar 

  • Webb SJ, Sparks BF, Friedman SD, Shaw DW, Giedd J, Dawson G et al (2009) Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res 172:61–67

    PubMed  PubMed Central  Google Scholar 

  • Wechsler-Reya R, Scott MP (2001) The developmental biology of brain tumors. Annu Rev Neurosci 24:385–428

    CAS  PubMed  Google Scholar 

  • Weinberg AG, Kirkpatrick JB (1995) Cerebellar hypoplasia in Werdnig-Hoffmann disease. Dev Med Child Neurol 17:511–516

    Google Scholar 

  • Wingate RJT (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88

    CAS  PubMed  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    CAS  PubMed  Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075

    CAS  PubMed  Google Scholar 

  • Yachnis AT (2002) Rhombencephalosynapsis with massive hydrocephalus: case report and pathogenetic considerations. Acta Neuropathol (Berl) 103:301–304

    Google Scholar 

  • Yachnis AT, Rorke LB (1999) Neuropathology of Joubert syndrome. J Child Neurol 14:655–659

    CAS  PubMed  Google Scholar 

  • Yachnis AT, Rorke LB, Trojanowski JQ (1994) Cerebellar dysplasia in humans: development and possible relationship to glial and primitive neuroectodermal tumors of the cerebellar vermis. J Neuropathol Exp Neurol 53:61–71

    CAS  PubMed  Google Scholar 

  • Yamada M, Terao M, Terashima T, Fujiyama T, Kawaguchi Y, Nabeshina Y, Hoshino M (2007) Origin of climbing fiber neurons and their developmental dependence on Ptf1a. J Neurosci 27:10924–10934

    CAS  PubMed  Google Scholar 

  • Yamasaki T, Kawaji K, Ono K, Bito H, Hirano T, Osumi N, Kengaku M (2001) Pax6 regulates granule cell polarization during parallel fiber formation in the developing cerebellum. Development 128:3133–3144

    CAS  PubMed  Google Scholar 

  • Yang XW, Zhong R, Heintz N (1996) Granule cell specification in the developing mouse brain as defined by expression of the zinc finger transcription factor RU49. Development 122:555–566

    CAS  PubMed  Google Scholar 

  • Yee KT, Simon HH, Tessier-Lavigne M, O’Leary DDM (1999) Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24:607–622

    CAS  PubMed  Google Scholar 

  • Yoon CH (1972) Developmental mechanisms for changes in cerebellum of staggerer mouse, a neurological mutant of genetic origin. Neurology 22:743–754

    CAS  PubMed  Google Scholar 

  • Young ID, McKeever PA, Squier MV, Grant J (1992) Lethal olivopontoneocerebellar hypoplasia with dysmorphic features in sibs. J Med Genet 29:733–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu MC, Cho E, Luo CB, Li WWY, Shen WZ, Yew DT (1996) Immunohistochemical studies of GABA and parvalbumin in the developing human cerebellum. Neuroscience 70:267–276

    CAS  PubMed  Google Scholar 

  • Zafeiriou DI, Vargiami E, Boltshauser E (2004) Cerebellar agenesis and diabetes insipidus. Neuropediatrics 35:364–367

    CAS  PubMed  Google Scholar 

  • Zheng C, Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, which supports neuronal differentiation along glial fibers. Science 272:417–419

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar M.D., Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J., Lammens, M., Wesseling, P., Hori, A. (2014). Development and Developmental Disorders of the Human Cerebellum. In: Clinical Neuroembryology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54687-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54687-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54686-0

  • Online ISBN: 978-3-642-54687-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics